Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T22:31:31.419Z Has data issue: false hasContentIssue false

Automated Detection Methods for Solar Activities and an Application for Statistic Analysis of Solar Filament

Published online by Cambridge University Press:  27 November 2018

Q. Hao
Affiliation:
School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China email: haoqi@nju.edu.cn Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, China
P. F. Chen
Affiliation:
School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China email: haoqi@nju.edu.cn Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, China
C. Fang
Affiliation:
School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China email: haoqi@nju.edu.cn Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

With the rapid development of telescopes, both temporal cadence and the spatial resolution of observations are increasing. This in turn generates vast amount of data, which can be efficiently searched only with automated detections in order to derive the features of interest in the observations. A number of automated detection methods and algorithms have been developed for solar activities, based on the image processing and machine learning techniques. In this paper, after briefly reviewing some automated detection methods, we describe our efficient and versatile automated detection method for solar filaments. It is able not only to recognize filaments, determine the features such as the position, area, spine, and other relevant parameters, but also to trace the daily evolution of the filaments. It is applied to process the full disk Hα data observed in nearly three solar cycles, and some statistic results are presented.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Aschwanden, M. J. & Freeland, S. L. 2012, Astrophys. J., 754, 112Google Scholar
Berghmans, D. 2002, in ESA Special Publication, Vol. 506, Solar Variability: From Core to Outer Frontiers, ed. A. Wilson, 85–89Google Scholar
Bernasconi, P. N., Rust, D. M., & Hakim, D. 2005, Solar Phys, 228, 97Google Scholar
Bonnin, X., Aboudarham, J., Fuller, N., Csillaghy, A., & Bentley, R. 2013, Sol. Phys., 283, 49Google Scholar
Boursier, Y., Lamy, P., Llebaria, A., Goudail, F., & Robelus, S. 2009, Sol. Phys., 257, 125Google Scholar
Byrne, J. P., Morgan, H., Habbal, S. R., & Gallagher, P. T. 2012, Astrophys. J., 752, 145Google Scholar
Caballero, C. & Aranda, M. C. 2014, Sol. Phys., 289, 1643Google Scholar
Chen, P. F. 2011, Living Reviews in Solar Physics, 8, 1Google Scholar
Colak, T. & Qahwaji, R. 2008, Sol. Phys., 248, 277Google Scholar
Crockett, P. J., Jess, D. B., Mathioudakis, M., & Keenan, F. P. 2009, Mon. Not. Roy. Astron. Soc., 397, 1852Google Scholar
Curto, J. J., Blanca, M., & Martínez, E. 2008, Sol. Phys., 250, 411Google Scholar
Djafer, D., Irbah, A., & Meftah, M. 2012, Solar Physics, 281, 863Google Scholar
Feng, S., Ji, K.-f., Deng, H., Wang, F., & Fu, X.-d. 2012, Journal of Korean Astronomical Society, 45, 167Google Scholar
Fernández Borda, R. A., Mininni, P. D., Mandrini, C. H., et al. 2001, in Astronomical Society of the Pacific Conference Series, Vol. 248, Magnetic Fields Across the Hertzsprung-Russell Diagram, ed. Mathys, G., Solanki, S. K., & Wickramasinghe, D. T., 149Google Scholar
Fonte, C. C. & Fernandes, J. 2009, Sol. Phys., 260, 21Google Scholar
Foullon, C. & Verwichte, E. 2006, Sol. Phys., 234, 135Google Scholar
Fuller, N., Aboudarham, J., & Bentley, R. D. 2005, Solar Phys, 227, 61Google Scholar
Gao, J., Wang, H., & Zhou, M. 2002, Solar Phys, 205, 93Google Scholar
Gill, C. D., Fletcher, L., & Marshall, S. 2010, Sol. Phys., 262, 355Google Scholar
Goel, S. & Mathew, S. K. 2014, Sol. Phys., 289, 1413Google Scholar
Hao, Q., Fang, C., Cao, W., & Chen, P. F. 2015, Astrophys. J. Suppl. Ser., 221, 33Google Scholar
Hao, Q., Fang, C., & Chen, P. F. 2013, Sol. Phys., 286, 385Google Scholar
Hao, Q., Guo, Y., Fang, C., Chen, P.-F., & Cao, W.-D. 2016, Research in Astronomy and Astrophysics, 16, 1Google Scholar
Hutton, J. & Morgan, H. 2017, Astron. Astrophys., 599, A68Google Scholar
Javaherian, M., Safari, H., Amiri, A., & Ziaei, S. 2014, Sol. Phys., 289, 3969Google Scholar
Joshi, A. D., Srivastava, N., & Mathew, S. K. 2010, Solar Phys, 262, 425Google Scholar
Kirk, M. S., Balasubramaniam, K. S., Jackiewicz, J., McNamara, B. J., & McAteer, R. T. J. 2013, Sol. Phys., 283, 97Google Scholar
Kirk, M. S., Pesnell, W. D., Young, C. A., & Hess Webber, S. A. 2009, Sol. Phys., 257, 99Google Scholar
Krista, L. D. & Gallagher, P. T. 2009, Sol. Phys., 256, 87Google Scholar
Labrosse, N., Dalla, S., & Marshall, S. 2010, Solar Phys, 262, 449Google Scholar
Loboda, I. P. & Bogachev, S. A. 2015, Sol. Phys., 290, 1963Google Scholar
Long, D. M., Bloomfield, D. S., Gallagher, P. T., & Pérez-Suárez, D. 2014, Sol. Phys., 289, 3279Google Scholar
Maurya, R. A. & Ambastha, A. 2010, Sol. Phys., 262, 337Google Scholar
McAteer, R. T. J., Kestener, P., Arneodo, A., & Khalil, A. 2010, Sol. Phys., 262, 387Google Scholar
Morgan, H., Byrne, J. P., & Habbal, S. R. 2012, Astrophys. J., 752, 144Google Scholar
Mravcová, L. & Švanda, M. 2017, New Astronomy, 57, 14Google Scholar
Olmedo, O., Zhang, J., Wechsler, H., Poland, A., & Borne, K. 2008, Sol. Phys., 248, 485Google Scholar
Pant, V., Willems, S., Rodriguez, L., et al. 2016, Astrophys. J., 833, 80Google Scholar
Podladchikova, O. & Berghmans, D. 2005, Sol. Phys., 228, 265Google Scholar
Pucha, R., Hiremath, K. M., & Gurumath, S. R. 2016, Journal of Astrophysics and Astronomy, 37, 3Google Scholar
Qu, M., Shih, F., Jing, J., & Wang, H. 2004, Sol. Phys., 222, 137Google Scholar
Qu, M., Shih, F. Y., Jing, J., & Wang, H. 2003, Sol. Phys., 217, 157Google Scholar
Qu, M., Shih, F. Y., Jing, J., & Wang, H. 2005, Solar Phys, 228, 119Google Scholar
Qu, M., Shih, F. Y., Jing, J., & Wang, H. 2006, Sol. Phys., 237, 419Google Scholar
Robbrecht, E. & Berghmans, D. 2004, Astron. Astrophys., 425, 1097Google Scholar
Schad, T. 2017, Sol. Phys., 292, 132Google Scholar
Scholl, I. F. & Habbal, S. R. 2008, Sol. Phys., 248, 425Google Scholar
Shibata, K. & Magara, T. 2011, Living Reviews in Solar Physics, 8, 6Google Scholar
Shih, F. Y. & Kowalski, A. J. 2003, Sol. Phys., 218, 99Google Scholar
Sych, R. A., Nakariakov, V. M., Anfinogentov, S. A., & Ofman, L. 2010, Sol. Phys., 266, 349Google Scholar
Tandberg-Hanssen, E., ed. 1995, Astrophysics and Space Science Library, Vol. 199, The nature of solar prominencesGoogle Scholar
Tappin, S. J., Howard, T. A., Hampson, M. M., Thompson, R. N., & Burns, C. E. 2012, Journal of Geophysical Research (Space Physics), 117, A05103Google Scholar
Turmon, M., Pap, J. M., & Mukhtar, S. 2002, Astrophys. J., 568, 396Google Scholar
Veronig, A., Steinegger, M., Otruba, W., et al. 2000, in ESA Special Publication, Vol. 463, The Solar Cycle and Terrestrial Climate, Solar and Space weather, ed. A. Wilson, 455Google Scholar
Wang, H., Qiu, J., Jing, J., & Zhang, H. 2003, Astrophys. J., 593, 564Google Scholar
Wang, Y., Cao, H., Chen, J., et al. 2010, Astrophys J, 717, 973Google Scholar
Watson, F., Fletcher, L., Dalla, S., & Marshall, S. 2009, Sol. Phys., 260, 5Google Scholar
Yang, Y.-F., Qu, H.-X., Ji, K.-F., et al. 2015, Research in Astronomy and Astrophysics, 15, 569Google Scholar
Yuan, Y., Shih, F. Y., Jing, J., Wang, H., & Chae, J. 2011, Solar Phys, 272, 101Google Scholar
Zhang, J., Wang, Y., & Liu, Y. 2010, Astrophys. J., 723, 1006Google Scholar
Zhao, C., Lin, G., Deng, Y., & Yang, X. 2016, Publications of the Astronomical Society of Australia, 33, e018Google Scholar
Zharkov, S., Zharkova, V., Ipson, S., & Benkhalil, A. 2005, EURASIP Journal on Advances in Signal Processing, 2005, 318462Google Scholar