Hostname: page-component-cb9f654ff-pvkqz Total loading time: 0 Render date: 2025-08-19T06:22:40.435Z Has data issue: false hasContentIssue false

Bayesian deconvolution of a rotating spectral line profile to a non-rotating one

Published online by Cambridge University Press:  01 August 2025

M. Curé*
Affiliation:
Instituto de Física y Astronomía, Universidad de Valparaíso
P. Escarate
Affiliation:
Escuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso
L. Celedon
Affiliation:
Instituto de Física y Astronomía, Universidad de Valparaíso
J. Cavieres
Affiliation:
Instituto de Estadística, Universidad de Valparaíso
E. Olivares
Affiliation:
Escuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso
I. Araya
Affiliation:
Vicerrectoría de Investigación, Universidad Mayor
C. Arcos
Affiliation:
Instituto de Física y Astronomía, Universidad de Valparaíso
R. Pezoa
Affiliation:
Escuela de Ingeniería Informática, Universidad de Valparaíso
G. Farias
Affiliation:
Escuela de Ingeniería Eléctrica, Pontificia Universidad Católica de Valparaíso
N. Machuca
Affiliation:
Instituto de Física y Astronomía, Universidad de Valparaíso

Abstract

In this work we present a Bayesian approach to obtain the non-rotating stellar spectra from an observed spectrum of a rotating star. This is our first attempt to solve an inverse problem expressed in terms of a Fredholm integral. Our preliminary results with synthetic spectra are promising. More studies are required to compare our Bayesian approach with the standard method for real spectra.

Information

Type
Poster Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Carroll, J. A. 1933, MNRAS, 93, 478.CrossRefGoogle Scholar
Stan Modeling Language Users Guide and Reference Manual, 2.30 (2022). https://mc-stan.orghttps://mc-stan.org Google Scholar