Skip to main content Accessibility help
×
Home
Hostname: page-component-dc8c957cd-qr7d4 Total loading time: 0.367 Render date: 2022-01-28T18:02:00.303Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Bayesian large-scale structure inference: initial conditions and the cosmic web

Published online by Cambridge University Press:  01 July 2015

Florent Leclercq
Affiliation:
Institut d'Astrophysique de Paris (IAP), UMR 7095, CNRS - UPMC Université Paris 6, 98bis boulevard Arago, F-75014 Paris, France Institut Lagrange de Paris (ILP), Sorbonne Universités, 98bis boulevard Arago, F-75014 Paris, France École polytechnique ParisTech, Route de Saclay, F-91128 Palaiseau, France
Benjamin Wandelt
Affiliation:
Institut d'Astrophysique de Paris (IAP), UMR 7095, CNRS - UPMC Université Paris 6, 98bis boulevard Arago, F-75014 Paris, France Institut Lagrange de Paris (ILP), Sorbonne Universités, 98bis boulevard Arago, F-75014 Paris, France Departments of Physics and Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801 emails: florent.leclercq@polytechnique.org, wandelt@iap.fr
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We describe an innovative statistical approach for the ab initio simultaneous analysis of the formation history and morphology of the large-scale structure of the inhomogeneous Universe. Our algorithm explores the joint posterior distribution of the many millions of parameters involved via efficient Hamiltonian Markov Chain Monte Carlo sampling. We describe its application to the Sloan Digital Sky Survey data release 7 and an additional non-linear filtering step. We illustrate the use of our findings for cosmic web analysis: identification of structures via tidal shear analysis and inference of dark matter voids.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2008, Astrophys. J. Supp., 175, 297CrossRefGoogle Scholar
Blanton, M. R., Schlegel, D. J., Strauss, M. A., et al. 2005, AJ, 129, 2562CrossRefGoogle Scholar
Bellman, R. E. 1961, Adaptive Control Processes: A Guided Tour (Princeton University Press)CrossRefGoogle Scholar
Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. 1987, Physics Letters B, 195, 216CrossRefGoogle Scholar
Hahn, O., Porciani, C., Carollo, C. M., & Dekel, A. 2007, Mon. Not. R. Astron. Soc., 375, 489CrossRefGoogle Scholar
Jasche, J. & Wandelt, B. D. 2013, Mon. Not. R. Astron. Soc., 432, 894CrossRefGoogle Scholar
Jasche, J. & Wandelt, B. D. 2013, ApJ, 779, 15CrossRefGoogle Scholar
Jasche, J., Leclercq, F., & Wandelt, B. D. 2015, JCAP, 1, 036CrossRefGoogle Scholar
Kitaura, F.-S. 2013, Mon. Not. R. Astron. Soc., 429, L84CrossRefGoogle Scholar
Leclercq, F., Jasche, J., Sutter, P. M., Hamaus, N., & Wandelt, B. 2015, JCAP, 3, 047CrossRefGoogle Scholar
Leclercq, F., Jasche, J., & Wandelt, B. 2015, arXiv:1502.02690Google Scholar
Sutter, P. M., Lavaux, G., Hamaus, N., et al. 2014, Mon. Not. R. Astron. Soc., 442, 462CrossRefGoogle Scholar
Sutter, P. M., Lavaux, G., Hamaus, N., et al. 2015, Astronomy and Computing, 9, 1CrossRefGoogle Scholar
Padmanabhan, N., Schlegel, D. J., Finkbeiner, D. P., et al. 2008, ApJ, 674, 1217CrossRefGoogle Scholar
Wang, H., Mo, H. J., Yang, X., & van den Bosch, F. C. 2013, ApJ, 772, 63CrossRefGoogle Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bayesian large-scale structure inference: initial conditions and the cosmic web
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Bayesian large-scale structure inference: initial conditions and the cosmic web
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Bayesian large-scale structure inference: initial conditions and the cosmic web
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *