Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-npccv Total loading time: 0.432 Render date: 2022-10-04T19:03:08.979Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Bridging the gap between supernovae and their remnants through multi-dimensional hydrodynamic modeling

Published online by Cambridge University Press:  17 October 2017

S. Orlando
Affiliation:
INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy
M. Miceli
Affiliation:
INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy Dip. di Fisica e Chimica, Univ. di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy
O. Petruk
Affiliation:
INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy 3Inst. Appl. Probl. in Mechanics and Mathematics, Naukova Street, 3-b Lviv 79060, Ukraine
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernova remnants (SNRs) are diffuse extended sources characterized by a complex morphology and a non-uniform distribution of ejecta. Such a morphology reflects pristine structures and features of the progenitor supernova (SN) and the early interaction of the SN blast wave with the inhomogeneous circumstellar medium (CSM). Deciphering the observations of SNRs might open the possibility to investigate the physical properties of both the interacting ejecta and the shocked CSM. This requires accurate numerical models which describe the evolution from the SN explosion to the remnant development and which connect the emission properties of the remnants to the progenitor SNe. Here we show how multi-dimensional SN-SNR hydrodynamic models have been very effective in deciphering observations of SNR Cassiopeia A and SN 1987A, thus unveiling the structure of ejecta in the immediate aftermath of the SN explosion and constraining the 3D pre-supernova structure and geometry of the environment surrounding the progenitor SN.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Badenes, C., Hughes, J. P., Cassam-Chenaï, G., & Bravo, E. 2008, ApJ, 680, 1149 CrossRefGoogle Scholar
DeLaney, T. et al. 2010, ApJ, 725, 2038 CrossRefGoogle Scholar
Frank, K. A., Zhekov, S. A., Park, S., et al. 2016, ApJ, 829, 40 CrossRefGoogle Scholar
Fransson, C., Larsson, J., Migotto, K., et al. 2015, ApJ, 806, L19 CrossRefGoogle Scholar
Fryxell, B. et al. 2000, ApJS, 131, 273 CrossRefGoogle Scholar
Hwang, U. & Laming, J. M. 2012, ApJ, 746, 130 CrossRefGoogle Scholar
Janka, H.-T., Melson, T., & Summa, A. 2016, Ann. Rev. Nucl. Part. Sci., 66, 341 CrossRefGoogle Scholar
Kifonidis, K., Plewa, T., Scheck, L., Janka, H.-T., & Müller, E. 2006, A&A, 453, 661 Google Scholar
Lee, J.-J., Park, S., Hughes, J. P., & Slane, P. O. 2014, ApJ, 789, 7 CrossRefGoogle Scholar
Li, H., McCray, R., & Sunyaev, R. A. 1993, ApJ, 419, 824 CrossRefGoogle Scholar
Mattila, S., Lundqvist, P., Gröningsson, P., et al. 2010, ApJ, 717, 1140 CrossRefGoogle Scholar
Miceli, M., Orlando, S., Reale, F., Bocchino, F., & Peres, G. 2013, MNRAS, 430, 2864 CrossRefGoogle Scholar
Milisavljevic, D. & Fesen, R. A. 2013, ApJ, 772, 134 CrossRefGoogle Scholar
Milisavljevic, D. & Fesen, R. A. 2015, Science, 347, 526 CrossRefGoogle Scholar
Morris, T. & Podsiadlowski, P. 2007, Science, 315, 1103 CrossRefGoogle Scholar
Nandra, K. et al. 2013, ArXiv e-prints: 1306.2307Google Scholar
Orlando, S., Peres, G., Reale, F., et al. 2005, A&A, 444, 505 Google Scholar
Orlando, S., Bocchino, F., Reale, F., Peres, G., & Pagano, P. 2008, ApJ, 678, 274 CrossRefGoogle Scholar
Orlando, S., Bocchino, F., Miceli, M., Petruk, O., & Pumo, M. L. 2012, ApJ, 749, 156 CrossRefGoogle Scholar
Orlando, S., Miceli, M., Pumo, M. L., & Bocchino, F. 2015, ApJ, 810, 168 CrossRefGoogle Scholar
Orlando, S., Miceli, M., Pumo, M. L., & Bocchino, F. 2016, ApJ, 822, 22 CrossRefGoogle Scholar
Patnaude, D. J., Lee, S.-H., Slane, P. O., et al. 2015, ApJ, 803, 101 CrossRefGoogle Scholar
Petruk, O., Dubner, G., Castelletti, G., et al. 2009, MNRAS, 393, 1034 CrossRefGoogle Scholar
Pumo, M. L. & Zampieri, L. 2011, Astrophys. J., 741, 41 CrossRefGoogle Scholar
van Veelen, B., Langer, N., Vink, J., et al. 2009, A&A, 503, 495 Google Scholar
Wang, L. et al. 2002, ApJ, 579, 671 CrossRefGoogle Scholar
Wang, L. & Wheeler, J. C. 2008, ARA&A, 46, 433 CrossRefGoogle Scholar
Wongwathanarat, A., Janka, H.-T., Mueller, E., et al., 2016, ArXiv e-prints, 1610.05643Google Scholar
Yamaguchi, H. et al. 2014, ApJ, 785, L27 CrossRefGoogle Scholar
You have Access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bridging the gap between supernovae and their remnants through multi-dimensional hydrodynamic modeling
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Bridging the gap between supernovae and their remnants through multi-dimensional hydrodynamic modeling
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Bridging the gap between supernovae and their remnants through multi-dimensional hydrodynamic modeling
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *