Skip to main content Accessibility help
×
Home

Classical and Recurrent Nova Models

  • Jordi José (a1), Jordi Casanova (a1), Enrique García–Berro (a2), Margarita Hernanz (a3), Steven N. Shore (a4) and Alan C. Calder (a5)...

Abstract

Remarkable progress in the understanding of nova outbursts has been achieved through combined efforts in photometry, spectroscopy and numerical simulations. According to the thermonuclear runaway model, novae are powered by thermonuclear explosions in the hydrogen-rich envelopes transferred from a low-mass stellar companion onto a close white dwarf star. Extensive numerical simulations in 1-D have shown that the accreted envelopes attain peak temperatures ranging between 108 and 4 × 108 K, for about several hundred seconds, hence allowing extensive nuclear processing which eventually shows up in the form of nucleosynthetic fingerprints in the ejecta. Indeed, it has been claimed that novae can play a certain role in the enrichment of the interstellar medium through a number of intermediate-mass elements. This includes 17O, 15N, and 13C, systematically overproduced with respect to solar abundances, plus a lower contribution in a number of other species (A < 40), such as 7Li, 19F, or 26Al. At the turn of the XXI Century, classical novae have entered the era of multidimensional models, which provide a new insight into the physical mechanisms that drive mixing at the core-envelope interface.

In this review, we will present hydrodynamic models of classical novae, from the onset of accretion up to the explosion and ejection stages, both for classical and recurrent novae, with special emphasis on their gross observational properties and their associated nucleosynthesis. The impact of nuclear uncertainties on the final yields will be discussed. Recent results from 2-D models of mixing during classical nova outbursts will also be presented.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Classical and Recurrent Nova Models
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Classical and Recurrent Nova Models
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Classical and Recurrent Nova Models
      Available formats
      ×

Copyright

References

Hide All
Abdo, A. A., et al. 2010, Science, 329, 817
Amari, S. 2002, New Astron. Rev., 46, 519
Amari, S., Gao, X., Nittler, L., Zinner, E., José, J., Hernanz, M., & Lewis, R. 2001, ApJ, 551, 1065
Anupama, G. C. 2002, in Classical Nova Explosions, ed. Hernanz, M. & José, J., New York, AIP, 32
Cameron, A. G. W. 1959, ApJ, 130, 916
Cameron, A. G. W. 1973, in Interstellar Dust and Related Topics, ed. Greenberg, J. M. & Van de Hulst, H. C., Dordrecht, Reidel, 545
Campbell, W. W., 1892, Astron. Nach., 131, 201
Campbell, W. W., 1895, ApJ, 1, 49
Casanova, J., José, J., Garcı a-Berro, E., Calder, A., & Shore, S. N. 2010, A&A, 513, L5
Casanova, J., José, J., Garcı a-Berro, E., Calder, A., & Shore, S. N. 2011, A&A, 527, A5
Clayton, D. D. & Hoyle, F. 1974, ApJ, 187, L101
Clayton, D. D. & Hoyle, F. 1976, ApJ, 203, 490
Clerke, A. M. 1902, Problems of Astrophysics, London, Nelson
Gehrz, R. D., Truran, J. W., Williams, R. E., & Starrfield, S. M. 1998, PASP, 110, 3
Giannone, P. & Weigert, A. 1967, Z. Astroph., 67, 41
Glasner, S. A., Livne, E., & Truran, J. W. 1997, ApJ, 475, 754
Glasner, S. A., Livne, E., & Truran, J. W. 2005, ApJ, 625, 347
Glasner, S. A. & Truran, J. W. 2009, ApJ, 692, L58
Gurevitch, L. Z. & Lebedinsky, A. I. 1957, in Non-stable stars, ed. Herbig, G.H., Cambridge Univ. Press: Cambridge, 77
Hernanz, M. 2008, in Classical Novae, Bode, M. and Evans, A. (eds.), Cambridge University Press, Cambridge, 252
Huggins, W. & Miller, W. A. 1866, MNRAS, 26, 215
Iliadis, C., Champagne, A., José, J., Starrfield, S., & Tupper, P. 2002, ApJS, 142, 105
José, J., Garcia-Berro, E., Hernanz, M., & Gil-Pons, P. 2007, ApJ, 662, L103
José, J. & Hernanz, M. 1998, ApJ, 494, 680
José, J., Hernanz, M., & Iliadis, C. 2006, NPA, 777, 550
Joy, A. H. 1954, ApJ, 120, 377
Kercek, A., Hillebrandt, W., & Truran, J. W. 1998, A&A, 337, 379
Kraft, R. P. 1964, ApJ, 139, 457
Nittler, L. R. & Hoppe, P. 2005, ApJ, 631, L89
Pickering, W. H. 1895, Observatory, 234, 436
Rose, W. K. 1968, ApJ, 152, 245
Sanford, R. F. 1949, ApJ, 109, 81
Schatzman, E. 1949, Ann. dAp., 12, 281
Schatzman, E. 1951, Ann. dAp., 14, 294
Sidgreaves, W. 1901a, MNRAS, 62, 137
Sidgreaves, W. 1901b, ApJ, 14, 366
Sparks, W. M. 1969, ApJ, 156, 569
Starrfield, S. 1971a, MNRAS, 152, 307
Starrfield, S. 1971b, MNRAS, 155, 129
Starrfield, S., Truran, J. W., Sparks, W. M., & Kutter, G. S. 1972, ApJ, 176, 169
Stratton, F. J. M. & Manning, W. H. 1939, Atlas of Spectra of Nova Hercules 1934, Cambridge, Solar Physics Observatory
Walker, M. F. 1954, PASP, 66, 230
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed