Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T06:54:36.178Z Has data issue: false hasContentIssue false

The complex evolution of supermassive black holes in cosmological simulations

Published online by Cambridge University Press:  20 January 2023

Peter H. Johansson
Affiliation:
Department of Physics, Gustaf Hällströmin katu 2, FI-00014, University of Helsinki, Finland email: Peter.Johansson@helsinki.fi
Matias Mannerkoski
Affiliation:
Department of Physics, Gustaf Hällströmin katu 2, FI-00014, University of Helsinki, Finland email: Peter.Johansson@helsinki.fi
Antti Rantala
Affiliation:
Max-Planck Institut für Astrophysik, Karl-Schwarzschild-Str 1, D-85748, Garching, Germany
Shihong Liao
Affiliation:
Department of Physics, Gustaf Hällströmin katu 2, FI-00014, University of Helsinki, Finland email: Peter.Johansson@helsinki.fi
Alexander Rawlings
Affiliation:
Department of Physics, Gustaf Hällströmin katu 2, FI-00014, University of Helsinki, Finland email: Peter.Johansson@helsinki.fi
Dimitrios Irodotou
Affiliation:
Department of Physics, Gustaf Hällströmin katu 2, FI-00014, University of Helsinki, Finland email: Peter.Johansson@helsinki.fi
Francesco Rizzuto
Affiliation:
Department of Physics, Gustaf Hällströmin katu 2, FI-00014, University of Helsinki, Finland email: Peter.Johansson@helsinki.fi

Abstract

We present here self-consistent zoom-in simulations of massive galaxies forming in a full cosmological setting. The simulations are run with an updated version of the KETJU code, which is able to resolve the gravitational dynamics of their supermassive black holes, while simultaneously modelling the large-scale astrophysical processes in the surrounding galaxies, such as gas cooling, star formation and stellar and AGN feedback. The KETJU code is able to accurately model the complex behaviour of multiple SMBHs, including dynamical friction, stellar scattering and gravitational wave emission, and also to resolve Lidov–Kozai oscillations that naturally occur in hierarchical triplet SMBH systems. In general most of the SMBH binaries form at moderately high eccentricities, with typical values in the range of , meaning that the circular binary models that are commonly used in the literature are insufficient for capturing the typical binary evolution.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amaro-Seoane, P., et al., 2022, Living Reviews in Relativity submitted, ArXiv:2203.06016Google Scholar
Aumer, M., White, S. D. M., Naab, T., & Scannapieco, C. 2013, MNRAS, 434, 3142 CrossRefGoogle Scholar
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature, 287, 307 Google Scholar
Blaes, O., Lee, M. H., & Socrates, A. 2002, ApJ, 578, 775 Google Scholar
Hahn, O., & Abel, T. 2011, MNRAS, 415, 2101 CrossRefGoogle Scholar
Hills, J. G., & Fullerton, L. W. 1980, AJ, 85, 1281 CrossRefGoogle Scholar
Hu, C.-Y., Naab, T., Walch, S., Moster, B. P., & Oser, L. 2014, MNRAS, 443, 1173 CrossRefGoogle Scholar
Johansson, P. H., Naab, T., & Burkert, A. 2009a, ApJ, 690, 802 Google Scholar
Johansson, P. H., Burkert, A., & Naab, T. 2009b, ApJL, 707, L184 CrossRefGoogle Scholar
Kelley, L. Z., Blecha, L., & Hernquist, L. 2017, MNRAS, 464, 3131 CrossRefGoogle Scholar
Khan, F. M., Fiacconi, D., Mayer, L., Berczik, P., & Just, A. 2016, ApJ, 828, 73 CrossRefGoogle Scholar
Kormendy, J., & Ho, L. C. 2013, ARA&A, 51, 511 Google Scholar
Lidov, M. L. 1962, P&SS, 9, 719 Google Scholar
Mannerkoski, M., Johansson, P. H., Pihajoki, P., Rantala, A., & Naab, T. 2019, ApJ, 887, 35 Google Scholar
Mannerkoski, M., Johansson, P. H., Rantala, A., Naab, T., & Liao, S. 2021, ApJL, 912, L20 CrossRefGoogle Scholar
Mannerkoski, M., Johansson, P. H., Rantala, A., Naab, T., Liao, S., & Rawlings, A. 2022, ApJ in press, ArXiv:2112.03576Google Scholar
Mora, T., & Will, C. M. 2004, PhRvD, 69, 104021 Google Scholar
Naab, T. & Ostriker, J.P. 2017, ARAA, 55, 59 Google Scholar
Quinlan, G. D. 1996, NewA, 1, 35 CrossRefGoogle Scholar
Peters, P. C. 1964, Physical Review, 136, 1224 Google Scholar
Rantala, A., Pihajoki, P., Johansson, P. H., et al. 2017, ApJ, 840, 53 Google Scholar
Rantala, A., Johansson, P. H., Naab, T., Thomas, J., & Frigo, M. 2018, ApJ, 864, 113 Google Scholar
Rantala, A., Pihajoki, P., Mannerkoski, M., Johansson, P. H., et al. 2020, MNRAS, 492, 4131 Google Scholar
Rauch, K. P., & Tremaine, S. 1996, NewA, 1, 149,CrossRefGoogle Scholar
Ryu, T., Perna, R., Haiman, Z., Ostriker, J. P., & Stone, N. C. 2018, MNRAS, 473, 3410 CrossRefGoogle Scholar
Springel, V. 2005, MNRAS, 364, 1105 CrossRefGoogle Scholar
Will, C. M. 2014, PhRvD, 89, 044043 Google Scholar
Zlochower, Y., & Lousto, C. O. 2015, PhRvD, 92, 024022 Google Scholar