Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-n4bck Total loading time: 0.23 Render date: 2022-08-09T22:25:11.894Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Confronting feedback simulations with observations of hot gas in elliptical galaxies

Published online by Cambridge University Press:  21 October 2010

Q. Daniel Wang*
Affiliation:
Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA email: wqd@astro.umass.edu
Rights & Permissions[Opens in a new window]

Extract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Elliptical galaxies comprise primarily old stars, which collectively generate a long-lasting feedback via stellar mass-loss and Type Ia SNe. This feedback can be traced by X-ray-emitting hot gas in and around such galaxies, in which little cool gas is typically present. However, the X-ray-inferred mass, energy, and metal abundance of the hot gas are often found to be far less than what are expected from the feedback, particularly in so-called low LX/LB ellipticals. This “missing” stellar feedback is presumably lost in galaxy-wide outflows, which can play an essential role in galaxy evolution (e.g., explaining the observed color bi-modality of galaxies). We are developing a model that can be used to properly interpret the X-ray data and to extract key information about the dynamics of the feedback and its interplay with galactic environment.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010
You have Access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Confronting feedback simulations with observations of hot gas in elliptical galaxies
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Confronting feedback simulations with observations of hot gas in elliptical galaxies
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Confronting feedback simulations with observations of hot gas in elliptical galaxies
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *