Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-hlvcg Total loading time: 0.175 Render date: 2022-07-01T17:56:37.022Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Convection in stars

Published online by Cambridge University Press:  02 March 2005

F. Kupka
Affiliation:
Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, 85741 Garching, Germany email: fk@mpa-garching.mpg.de
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Convection is one of the most intricate processes studied in stellar astrophysics and has challenged both theorists and observers since the beginnings of astrophysics. But during the last two decades observational data of unprecedented resolution and accuracy have been collected in solar and stellar research which permit a new look at the field. An enormous increase of computer speed now permits solving more complete model equations with more accurate numerical approximations. Modelling and theoretical understanding of convection, however, are lagging behind observational progress and are still wanting.

As a background to the contributions to this session on convection, I first provide an overview on its basic physics and its observational evidence. I point out why astrophysicists have a general interest in improvements of our understanding of stellar convection and then focus on convection in A-stars with their unique combination of convection zones. I summarise how this richness of different manifestations can arise in A-stars, such as convection zones near the surface and in the core, several on top of each other, or some of them depleted by diffusion processes, suppressed by or even creating magnetic fields, suspected to create a chromosphere in some of them, or influenced by binaries, to name just a few. In the last part I will present a few recent results on modelling of convection in A-stars.To search for other articles by the author(s) go to: http://adsabs.harvard.edu/abstract_service.html

Type
Contributed Papers
Copyright
© 2004 International Astronomical Union
Supplementary material: PDF

Kupka erratum

IAUS224 supplementary material

Download Kupka erratum(PDF)
PDF 32 KB
You have Access
4
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Convection in stars
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Convection in stars
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Convection in stars
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *