Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-bjz6k Total loading time: 0.258 Render date: 2022-05-25T07:26:12.107Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Deep learning for studies of galaxy morphology

Published online by Cambridge University Press:  30 May 2017

D. Tuccillo
Affiliation:
GEPI, Observatoire de Paris, CNRS, Université Paris Diderot, 61, Avenue de l’Observatoire F-75014, Paris, France MINES ParisTech, PSL Research University, CMM Centre for mathematical morphology, Fontainebleau, France
M. Huertas-Company
Affiliation:
GEPI, Observatoire de Paris, CNRS, Université Paris Diderot, 61, Avenue de l’Observatoire F-75014, Paris, France
E. Decencière
Affiliation:
MINES ParisTech, PSL Research University, CMM Centre for mathematical morphology, Fontainebleau, France
S. Velasco-Forero
Affiliation:
MINES ParisTech, PSL Research University, CMM Centre for mathematical morphology, Fontainebleau, France
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Establishing accurate morphological measurements of galaxies in a reasonable amount of time for future big-data surveys such as EUCLID, the Large Synoptic Survey Telescope or the Wide Field Infrared Survey Telescope is a challenge. Because of its high level of abstraction with little human intervention, deep learning appears to be a promising approach. Deep learning is a rapidly growing discipline that models high-level patterns in data as complex multilayered networks. In this work we test the ability of deep convolutional networks to provide parametric properties of Hubble Space Telescope like galaxies (half-light radii, Sérsic indices, total flux etc..). We simulate a set of galaxies including point spread function and realistic noise from the CANDELS survey and try to recover the main galaxy parameters using deep-learning. We compare the results with the ones obtained with the commonly used profile fitting based software GALFIT. This way showing that with our method we obtain results at least equally good as the ones obtained with GALFIT but, once trained, with a factor 5 hundred time faster.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bastien, F., et al., (2012), NIPS, 2012Google Scholar
Dieleman, S., Willett, K. W., & Dambre, J. 2015, MNRAS, 450, 1441 CrossRefGoogle Scholar
Fukushima, K. 1980, Biological Cybernetics, 36, 193202 CrossRefGoogle Scholar
Galametz, A., Grazian, A., Fontana, A., et al. 2013, ApJS, 206, 10 CrossRefGoogle Scholar
Huertas-Company, M., et al. 2015, ApJS, 221, 8 CrossRefGoogle Scholar
Kim, E. & Brunner, R. 2017, MNRAS, 464, 44634475 CrossRefGoogle Scholar
Koekemoer, A. M., et al. 2013, ApJS, 209, 3 CrossRefGoogle Scholar
Krizhevsky, A., Sutskever, I., & Hinton, G. 2012, NIPS1097–1105Google Scholar
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. 1989, Neural Computation, 1 (4):541551 CrossRefGoogle Scholar
Peng, C. Y., et al. 2002, AJ, 124, 266 CrossRefGoogle Scholar
Schmidhuber, J. 2015, Neural Netw, 61, 85117 CrossRefGoogle Scholar
van der Wel, A., et al. (2012) ApJS, 203, 24 CrossRefGoogle Scholar
You have Access
8
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Deep learning for studies of galaxy morphology
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Deep learning for studies of galaxy morphology
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Deep learning for studies of galaxy morphology
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *