Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-28T18:22:30.497Z Has data issue: false hasContentIssue false

Did globular clusters contribute to the stellar population of the Galactic halo?

Published online by Cambridge University Press:  09 May 2016

Corinne Charbonnel
Affiliation:
Department of Astronomy, University of Geneva1290 Versoix - Switzerland email: Corinne.Charbonnel@unige.ch IRAP CNRS UMR 5277, Université de Toulouse III31400 Toulouse, France
Martin Krause
Affiliation:
Universitäts-Sternwarte München, Ludwig-Maximilians-Universität Scheinerstr. 1, 81679 München, Germany email: krause@mpe.mpg.de Max Planck Institute for extraterrestrial Physics, PO Box 1312, Giessenbachstr., 85741 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The origin of Galactic halo stars and the contribution of globular clusters (GC) to this stellar population have long been (and still are) debated. The discovery of multiple stellar populations with peculiar chemical properties in GCs both in the Milky Way and in Local Group galaxies recently brought a renewal on these questions. Indeed most of the scenarios that compete to reproduce the present-day GC characteristics call for fast expulsion of both gas and low-mass stars from these clusters in their early infancy. In this framework, the initial masses of GCs could have been 8 to 25 times higher than their present-day stellar mass, and they could have contributed to 5 to 20 % of the low-mass stars in the Galactic halo. Here we revisit these conclusions, which are in tension with observations of dwarf galaxies and of young massive star clusters in the Local Group. We come back in particular on the paradigm of gas expulsion from massive star clusters, and propose an alternative interpretation of the GC abundance properties. We conclude by proposing a major revision of the current concepts regarding the role massive star clusters play in the assembly of galactic haloes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bastian, N. & et al., 2013, MNRAS, 436, 2398Google Scholar
Bastian, N. & Hollyhead, K., Cabrera-Ziri, I., 2014, MNRAS, 445, 378CrossRefGoogle Scholar
Bastian, N., & Lardo, C., 2015, MNRAS, 453, 357Google Scholar
Bragaglia, A., et al. 2014, ApJ, 796, 68Google Scholar
Carretta, E., et al. 2009, A&A 505, 139Google Scholar
Carretta, E., et al. 2010, A&A, 516, A55Google Scholar
Carretta, E. 2013, A&A, 557, A128Google Scholar
Charbonnel, C. & Lagarde, N. 2010, A&A 522 A10 (C14)Google Scholar
Charbonnel, C. & Zahn, J. P. 2007, A&A (Letter), 467, L15Google Scholar
Charbonnel, C., Chantereau, W., Krause, M., Primas, F., & Wang, Y. 2014, A&A (Letter), 569, L6Google Scholar
D'Antona, F. & Caloi, V. 2004, ApJ, 611, 871CrossRefGoogle Scholar
Decressin, T., et al. 2007a, A&A, 475, 859Google Scholar
Decressin, T., Charbonnel, C. & Meynet, G., 2007b, A&A, 464, 1029Google Scholar
Decressin, T., Baumgardt, H., Charbonnel, C., & Kroupa, P., A&A, 516, A73Google Scholar
De Mink, S., et al. 2009, A&A (Letters), 507, L1Google Scholar
Denissenkov, P. A. & Hartwick, F. D. A. 2014, MNRAS (Letter), 437, L21Google Scholar
D'Ercole, , et al. 2010, MNRAS, 407, 854CrossRefGoogle Scholar
Khalaj, P. & Baumgardt, H. 2015, MNRAS, 492, 924Google Scholar
Gratton, R. G., Carretta, E., & Bragaglia, A. 2012, A&ARv, 20, 50Google Scholar
Krause, M., Charbonnel, C., et al. 2012, A&A (Letter), 546, L5Google Scholar
Krause, M., Charbonnel, C., et al. 2013, A&A, 552, A121Google Scholar
Krause, M., Charbonnel, C., Bastian, N., & Diehl, R. 2015, submitted to A&A (K15)Google Scholar
Kroupa, P., et al. 2013, in Planets, Stars and Stellar Systems (Springer Netherlands), 115Google Scholar
Lagarde, N., et al. 2012, A&A, 543, A108Google Scholar
Larsen, S. S., et al. 2014, A&A, 565, A98Google Scholar
Lind, K., et al. 2009, A&A, 503, 545Google Scholar
Marino, A. F., et al. 2015, MNRAS, 450, 815Google Scholar
Martell, S. L., Molinski, J. P., Beers, T. C., & Grebel, E. K. 2011, A&A, 354, A136Google Scholar
Milone, A. P., Marino, A. F., Piotto, G. P., et al. 2015, ApJ, 808, 51Google Scholar
Piotto, G., et al. 2002, ApJ, 670, 39Google Scholar
Prantzos, N. & Charbonnel, C. 2006, A&A, 458, 135Google Scholar
Schaerer, D. & Charbonnel, C. 2011, MNRAS, 413, 2297CrossRefGoogle Scholar
Simmerer, J., et al. 2013, ApJ (Letters), 764, L7Google Scholar
Smith, G. H. & Norris, J. 1982, ApJ, 254, 594Google Scholar
Ventura, P., et al. 2001, ApJ (Letter), 550, L65Google Scholar
Ventura, P., et al. 2013, MNRAS, 431, 3642CrossRefGoogle Scholar