Hostname: page-component-7d684dbfc8-hsbzg Total loading time: 0 Render date: 2023-09-22T12:19:17.333Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Direct measures of chemical abundances from stacked spectra of star-forming galaxies: Implications for the mass–metallicity–star formation rate relation

Published online by Cambridge University Press:  29 March 2021

Slodkowski Katia Clerici
Affiliation:
Departamento de Física - CFM, Universidade Federal de Santa Catarina, C.P. 476, 88040-900, Florianópolis, SC, Brazil email: katia@astro.ufsc.br
Natalia Vale Asari
Affiliation:
Departamento de Física - CFM, Universidade Federal de Santa Catarina, C.P. 476, 88040-900, Florianópolis, SC, Brazil email: katia@astro.ufsc.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The stellar mass–star formation rate–metallicity relation provides clues on the chemical evolution of galaxies. We revisit this relation by measuring the gas-phase metallicity using the direct method. For metal-rich galaxies this is not straightforward, because auroral emission lines sensitive the electron temperature are lost in spectral noise. In order to increase the spectral signal-to-noise ratio and detect faint auroral lines, we stack the spectra of similar galaxies. This allows us to use the direct method to obtain consistent metallicity measurements.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abazajian, K. N., et al. 2009, ApJS, 182, 543 CrossRefGoogle Scholar
Asari, N. V., et al. 2007, MNRAS, 381, 263 CrossRefGoogle Scholar
Cid Fernandes, R., et al. 2005, MNRAS, 358, 363 CrossRefGoogle Scholar
Cardelli, J. A., Clayton, G. C., Mathis, J. S., et al. 1989, ApJ, 345, 245 CrossRefGoogle Scholar
Curti, M., et al. 2017, MNRAS, 465, 1384 CrossRefGoogle Scholar
Florido, T. Z. 2018, MSc thesis, Universidade Federal de Santa CatarinaGoogle Scholar
Kauffmann, G., et al. 2003, MNRAS, 346, 1055 CrossRefGoogle Scholar
Kewley, L. J. & Ellison, S. L. 2008, ApJ, 681, 1183 CrossRefGoogle Scholar
Luridiana, V., Morisset, C., Shaw, R. A., et al. 2015, A&A, 573, A42 Google Scholar
Mannucci, F., Cresci, G., Maiolino, R., et al. 2010, MNRAS, 408, 2115 CrossRefGoogle Scholar