Skip to main content Accessibility help
×
Home
Hostname: page-component-846f6c7c4f-msmtk Total loading time: 0.26 Render date: 2022-07-07T03:08:45.857Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Dynamo models of grand minima

Published online by Cambridge University Press:  05 July 2012

Arnab Rai Choudhuri*
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore-560012 email: arnab@physics.iisc.ernet.in
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since a universally accepted dynamo model of grand minima does not exist at the present time, we concentrate on the physical processes which may be behind the grand minima. After summarizing the relevant observational data, we make the point that, while the usual sources of irregularities of solar cycles may be sufficient to cause a grand minimum, the solar dynamo has to operate somewhat differently from the normal to bring the Sun out of the grand minimum. We then consider three possible sources of irregularities in the solar dynamo: (i) nonlinear effects; (ii) fluctuations in the poloidal field generation process; (iii) fluctuations in the meridional circulation. We conclude that (i) is unlikely to be the cause behind grand minima, but a combination of (ii) and (iii) may cause them. If fluctuations make the poloidal field fall much below the average or make the meridional circulation significantly weaker, then the Sun may be pushed into a grand minimum.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Babcock, H. W. 1961, ApJ, 133, 572CrossRefGoogle Scholar
Basu, S. & Antia, H. M. 2010, ApJ, 717, 488CrossRefGoogle Scholar
Beer, J., Tobias, S., & Weiss, N. 1998, Solar Phys., 181, 237CrossRefGoogle Scholar
Brandenburg, A., Krause, F., Meinel, R., & Moss, D., Tuominen, I. 1989, A&A, 213, 411Google Scholar
Brandenburg, A. & Spiegel, E. A. 2008, AN, 329, 351Google Scholar
Charbonneau, P. 2005, Solar Phys., 229, 345CrossRefGoogle Scholar
Charbonneau, P., Beaubien, G., & St-Jean, C. 2007, ApJ, 658, 657CrossRefGoogle Scholar
Charbonneau, P., Blais-Laurier, G., & St-Jean, C. 2004, ApJ, 616, L183CrossRefGoogle Scholar
Charbonneau, P. & Dikpati, M. 2000, ApJ, 543, 1027CrossRefGoogle Scholar
Charbonneau, P., St-Jean, C., & Zacharias, P. 2005, ApJ, 619, 613CrossRefGoogle Scholar
Chatterjee, P. & Choudhuri, A. R. 2006, Solar Phys., 239, 29CrossRefGoogle Scholar
Chatterjee, P., Nandy, D., & Choudhuri, A. R. 2004, A&A, 427, 1019Google Scholar
Choudhuri, A. R. 1989, Solar Phys., 123, 217CrossRefGoogle Scholar
Choudhuri, A. R. 1992, A&A, 253, 277Google Scholar
Choudhuri, A. R. 1998, The Physics of Fluids and Plasmas: An Introduction for Astrophysicists (Cambridge University Press, Cambridge)CrossRefGoogle Scholar
Choudhuri, A. R. 2003, Solar Phys., 215, 31CrossRefGoogle Scholar
Choudhuri, A. R., Chatterjee, P., & Jiang, J. 2007, Phys. Rev. Lett., 98, 131103CrossRefGoogle Scholar
Choudhuri, A. R., Gilman, P. A. 1987, ApJ, 316, 788CrossRefGoogle Scholar
Choudhuri, A. R. & Karak, B. B. 2009, RAA, 9, 953Google Scholar
Choudhuri, A. R., Schüssler, M., & Dikpati, M. 1995, A&A, 303, L29Google Scholar
D'Silva, S. & Choudhuri, A. R. 1993, A&A, 272, 621Google Scholar
Fan, Y., Fisher, G. H., & DeLuca, E. E. 1993, ApJ, 405, 390CrossRefGoogle Scholar
Goel, A. & Choudhuri, A. R. 2009, RAA, 9, 115Google Scholar
Guerrero, G., Dikpati, M., & de Gouveia Dal Pino, E. M. 2009 ApJ, 701, 725CrossRefGoogle Scholar
Hathaway, D. H. & Rightmire, L. 2010, Science, 327, 1350CrossRefGoogle Scholar
Hotta, H. & Yokoyama, T. 2010, ApJ, 714, L308CrossRefGoogle Scholar
Hoyng, P. 1993, A&A, 272, 321Google Scholar
Hoyt, D. V. & Schatten, K. H. 1996, Solar Phys., 165, 181CrossRefGoogle Scholar
Ivanova, T. S. & Ruzmaikin, A. A. 1977, SvA, 21, 479Google Scholar
Jiang, J., Chatterjee, P., & Choudhuri, A. R. 2007, MNRAS, 381, 1527CrossRefGoogle Scholar
Karak, B. B. 2010, ApJ, 724, 1021CrossRefGoogle Scholar
Karak, B. B. & Choudhuri, A. R. 2011, MNRAS, 410, 1503Google Scholar
Karak, B. B. & Choudhuri, A. R. 2012, Solar Phys., in pressGoogle Scholar
Krause, F. & Meinel, R. 1988, GAFD, 43, 95CrossRefGoogle Scholar
Küker, M., Arlt, R., & Rüdiger, G. 1999, A&A 343, 977Google Scholar
Leighton, R. B. 1969, ApJ, 156, 1CrossRefGoogle Scholar
Longcope, D. W. & Choudhuri, A. R. 2002, Solar Phys., 205, 63CrossRefGoogle Scholar
Mininni, P. D., Gomez, D. O., & Mindlin, G. B. 2001, Solar Phys., 201, 203CrossRefGoogle Scholar
Miyahara, H., Masuda, K., Muraki, Y., Furuzawa, H., Menjo, H., & Nakamura, T. 2004, Solar Phys., 224, 317CrossRefGoogle Scholar
Moss, D., Brandenburg, A., Tavakol, R., & Tuominen, I. 1992, A&A, 265, 843Google Scholar
Nandy, D., Muñoz-Jaramillo, A., & Martens, P. C. H. 2011 Nature 471, 80CrossRefGoogle Scholar
Ossendrijver, A. J. H., Hoyng, P., & Schmitt, D. 1996, A&A, 313, 938Google Scholar
Parker, E. N. 1955, ApJ, 122, 293CrossRefGoogle Scholar
Schmitt, D. & Schüssler, M. 1989, A&A, 223, 343Google Scholar
Schmitt, D., Schüssler, M., & Ferriz-Mas, A. 1996, A&A, 311, L1Google Scholar
Sokoloff, D. & Nesme-Ribes, E. 1994, A&A, 288, 293Google Scholar
Steenbeck, M., Krause, F., & Rädler, K. H. 1966, Z. Naturforsch., 21, 369Google Scholar
Stix, M. 1972, A&A, 20, 9Google Scholar
Usoskin, I. G., Mursula, K., & Kovaltsov, G. A. 2000, A&A, 354, L33Google Scholar
Usoskin, I. G., Solanki, S. K., & Kovaltsov, G. A. 2007, A&A, 471, 301Google Scholar
Vaquero, J. M., Gallego, M. C., Usoskin, I. G., & Kovaltsov, G. A. 2011, ApJ, 731, L24CrossRefGoogle Scholar
Weiss, N. O., Cattaaneo, F., & Jones, C. A. 1984, GAFD, 30, 305CrossRefGoogle Scholar
Yeates, A. R., Nandy, D., & Mackay, D. H. 2008, ApJ, 673, 544CrossRefGoogle Scholar
Yoshimura, H. 1975, ApJ, 201, 740CrossRefGoogle Scholar
Yoshimura, H. 1978, ApJ, 226, 706CrossRefGoogle Scholar
You have Access
1
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dynamo models of grand minima
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Dynamo models of grand minima
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Dynamo models of grand minima
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *