Hostname: page-component-7d684dbfc8-7nm9g Total loading time: 0 Render date: 2023-09-25T06:07:27.029Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

The effect of gaseous accretion disk on dynamics of the stellar cluster in AGN

Published online by Cambridge University Press:  07 March 2016

Bekdaulet Shukirgaliyev*
Fesenkov Astrophysical Institute Observatory 23, 050020 Almaty, Kazakhstan email:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There is a supermassive black hole, a gaseous accretion disk and compact star cluster in the center of active galactic nuclei, as known today. So the activity of AGN can be represented as the result of interaction of these three subsystems. In this work we investigate the dynamical interaction of a central star cluster surrounding a supermassive black hole and a central accretion disk. The dissipative force acting on stars in the disk leads to an asymmetry in the phase space distribution of the central star cluster due to the rotating accretion disk. In our work we present some results of Stardisk model, where we see some changes in density and phase space of central star cluster due to influence of rotating gaseous accretion disk.

Contributed Papers
Copyright © International Astronomical Union 2016 


Beckmann, V. & Shrader, C. 2013, Active galactic nuclei (John Wiley & Sons.), 374 p.Google Scholar
Harfst, S., Gualandris, A., Merritt, D., Spurzem, R., Zwart, S. P., & Berczik, P. 2007, New Astronomy, 12, 357CrossRefGoogle Scholar
Hénon, M., 1971, Astrophys. Space Sci., 14, 151CrossRefGoogle Scholar
Just, A., Yurin, D., Makukov, M., Berczik, P., Omarov, Ch., Spurzem, R., & Vilkoviskij, E. Y. 2012, ApJ, 758, 51CrossRefGoogle Scholar
Kormendy, J. & Ho, L. C. 2013, Annu. Rev. Astron. Astrophys, 51, 511CrossRefGoogle Scholar
Novikov, I. D., Thorne, K. S. 1973, in Dewitt, C., Dewitt, B. S., eds, Black Holes (Les Astres Occlus) Astrophysics of black holes., pp 343–450Google Scholar
Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337Google Scholar
Vilkoviskij, E., Makukov, M., Omarov, Ch., Panamarev, T., Spurzem, R., Berczik, P., & Just, A. 2013, A&AT, 28, 151Google Scholar
Wu, X.-B., Wang, F., Fan, X., Yi, W., Zuo, W., Bian, F., Jiang, L., McGreer, I. D., Wang, R., Yang, J., Yang, Q., Thompson, D., & Beletsky, Y., 2015, Nature, 518, 512CrossRefGoogle Scholar