Skip to main content
×
Home
    • Aa
    • Aa

The Effect of Small Scale Motion on an Essentially-Nonlinear Dynamo

  • Benjamin M. Byington (a1), Nicholas H. Brummell (a1) and Steven M. Tobias (a2)
Abstract
Abstract

A dynamo is a process by which fluid motions sustain magnetic fields against dissipative effects. Dynamos occur naturally in many astrophysical systems. Theoretically, we have a much more robust understanding of the generation and maintenance of magnetic fields at the scale of the fluid motions or smaller, than that of magnetic fields at scales much larger than the local velocity. Here, via numerical simulations, we examine one example of an “essentially nonlinear” dynamo mechanism that successfully maintains magnetic field at the largest available scale (the system scale) without cascade to the resistive scale. In particular, we examine whether this new type of dynamo at the system scale is still effective in the presence of other smaller-scale dynamics (turbulence).

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The Effect of Small Scale Motion on an Essentially-Nonlinear Dynamo
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      The Effect of Small Scale Motion on an Essentially-Nonlinear Dynamo
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      The Effect of Small Scale Motion on an Essentially-Nonlinear Dynamo
      Available formats
      ×
Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the International Astronomical Union
  • ISSN: 1743-9213
  • EISSN: 1743-9221
  • URL: /core/journals/proceedings-of-the-international-astronomical-union
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 32 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th September 2017. This data will be updated every 24 hours.