Hostname: page-component-7d684dbfc8-d9hj2 Total loading time: 0 Render date: 2023-09-28T08:19:36.480Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

EPM ephemerides and relativity

Published online by Cambridge University Press:  06 January 2010

E. V. Pitjeva*
Institute of Applied astronomy RAS, Kutuzov quay 10, 191187 St. Petersburg, Russia email:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not possible as this article does not have html content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the seventies of the last century the EPM ephemerides (Ephemerides of Planets and the Moon) of IAA RAS originated and have been developed since that time. These ephemerides are based upon relativistic equations of motion of celestial bodies and light rays and upon relativistic time scales. The updated model of EPM2008 includes the new values of planet masses and other constants, the improved dynamical model with adding Trans–Neptunian Objects and the expanded database (1913–2008). More than 260 parameters have been determined while improving the planetary part of EPM2008 to 550000 observations. EPM2008 have been oriented to ICRF by including into the total solution the VLBI data of spacecraft near the planets. The real uncertainty of EPM ephemerides has been checked by comparison with the JPL's DE ephemerides. Some estimates of the post–model parameters have been obtained: |1−β| < 0.0002, |1−γ| < 0.0002, /G = (−5.9±4.4) ⋅ 10−14 per year, the statistic zero corrections to the planet perihelion advances.

Contributed Papers
Copyright © International Astronomical Union 2010


Ash, M. E., Shapiro, I. I., & Smith, W. B. 1967, AJ, 72, 332CrossRefGoogle Scholar
Brumberg, V. A. 1972, in: Demin, V. G. (ed.), Relativistic Celestial Mechanics (Moscow)Google Scholar
Brumberg, V. A. 1979, Celest. Mech. 20, 329CrossRefGoogle Scholar
Estabrook, F. B. 1971, in: Derivation of Relativistic Lagrangian for n-Body Equations Containing Relativity Parameters β and γ, JPL Internal CommunicationGoogle Scholar
Everhart, E. 1974, Celest. Mech., 10, 35CrossRefGoogle Scholar
Fienga, A., Manche, H., Laskar, J., & Gastineau, M. 2008, A&A, 477, 315Google Scholar
Folkner, W. M., Williams, J. G., & Boggs, D. H. 2008, Interoffice Memorandum, 343.R-08-003Google Scholar
Konopliv, A. S., Yoder, C. F., Standish, E. M., Yuan, D. N., & Sjogren, W. L., 2006, Icarus, 182, 23CrossRefGoogle Scholar
Krasinsky, G. A., Pitjeva, E. V., Sveshnikov, M. L., & Sveshnikova, E. S. 1978, Trudy Inst.Theoretical astronomy, 17, 46, in Russian.Google Scholar
Krasinsky, G. A., Aleshkina, E. Yu.Pitjeva, E. V., & Sveshnikov, M. L. 1986, in: Kovalevsky, J., & Brumberg, V. A. (eds.), Relativity in Celestial Mechanics and Astrometry, Proc. IAU Symposium No. 114 (Dordrecht: D. Reidel Publ.Com.), p. 315CrossRefGoogle Scholar
Krasinsky, G. A. & Vasilyev, M. V. 1997, in Wytrzyszczak, I. M., Lieske, J. H. & Feldman, R. A. (eds.), Dynamics and Astrometry of Natural and Artificial Celestial Bodies, Proc. IAU Colloquim No. 165 (Dordrecht: Kluwer Academic Publishers), p. 239CrossRefGoogle Scholar
Pitjeva, E. V. 1986, Byull. Inst. T. A. Ross. Akad. Nauk, 15, 538, in RussianGoogle Scholar
Pitjeva, E. V. 1993, Celest. Mech. Dyn. Astr., 55, 313CrossRefGoogle Scholar
Pitjeva, E. V. 2005, Astron. Letters, 31, 310CrossRefGoogle Scholar
Pitjeva, E. V. 2009, in: Soffel, M. & Capitane, N. (eds.), Astrometry, Geodynamics and Astronomical Reference Systems, Proc. JOURNEES-2008 (Dresden), p. 57Google Scholar
Pitjeva, E. V. & Standish, E. M. 2009, Celest. Mech. Dyn. Astr., 103, 365CrossRefGoogle Scholar
Standish, E. M. Jr., Keesey, M. W., & Newhall, XX 1976, Technical Report, JPL, 32-1603, 35 p.Google Scholar
Will, C. M. 1974, in: Bertotti, B. (ed.), The Theoretical Tools of Experimental Gravitation, Experimental Gravitation (Academic Press)Google Scholar
Yagudina, E. I. 2009, in: Soffel, M. & Capitane, N. (eds.), Astrometry, Geodynamics and Astronomical Reference Systems, Proc. JOURNEES-2008 (Dresden), p. 61Google Scholar