Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-13T04:52:57.424Z Has data issue: false hasContentIssue false

Evolution of High-mass X-ray binaries in the Small Magellanic Cloud

Published online by Cambridge University Press:  30 December 2019

Jun Yang*
Affiliation:
Department of Physics and Astronomy, the University of Utah, Salt Lake City, Utah 84112, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In order to understand the progenitor of rotation powered pulsars, we compare them with High-mass X-ray binary (HMXB) pulsars, (or X-ray pulsars), in the Small Magellanic Cloud. The plot of period period vs. period derivative shows that isolated neutron stars could be evolved from HMXBs. The pulsars with long spin period might spin up to 0.001-1 s. The mechanism is a third-body interaction that detaches the donor, leaving an isolated, small period neutron star behind.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Alpar, M., Cheng, A., Ruderman, M. & Shaham, J. (1982). A new class of radio pulsars. Nature, 300(5894), 728730.CrossRefGoogle Scholar
Becker, W. & Trümper, J. (1997). The x-ray luminosity of rotation-powered neutron stars. arXiv preprint astro-ph/9708169.Google Scholar
Beskin, V., Balogh, A., Falanga, M., Lyutikov, M., Mereghetti, S., Piran, T., & Treumann, R. (2015). The strongest magnetic fields in the universe. Issues, 1.Google Scholar
Bhattacharya, D. & van den Heuvel, E. P. J. (1991). Formation and evolution of binary and millisecond radio pulsars. Physics Reports, 203(1-2), 1124.CrossRefGoogle Scholar
Christodoulou, D. M., Laycock, S. G., Yang, J. & Fingerman, S. (2016). Tracing the lowest propeller line in magellanic high-mass x-ray binaries. The Astrophysical Journal, 829(1), 30.CrossRefGoogle Scholar
Coe, M. & Kirk, J. (2015). Catalogue of be/x-ray binary systems in the small magellanic cloud: X-ray, optical and ir properties. Monthly Notices of the Royal Astronomical Society, 452(1), 969977.CrossRefGoogle Scholar
Galache, J., Corbet, R., Coe, M., Laycock, S., Schurch, M., Markwardt, C., Marshall, F. & Lochner, J. (2008). A long look at the be/x-ray binaries of the small magellanic cloud. The Astrophysical Journal Supplement Series, 177(1), 189.CrossRefGoogle Scholar
Graczyk, D., Pietrzyński, G., Thompson, I. B., Gieren, W., Pilecki, B., Konorski, P., Udalski, A., Soszyński, I., Villanova, S., Górski, M., et al. (2013). The araucaria project. the distance to the small magellanic cloud from late-type eclipsing binaries. The Astrophysical Journal, 780(1), 59.CrossRefGoogle Scholar
Haberl, F. & Sturm, R. (2016). High-mass x-ray binaries in the small magellanic cloud. Astronomy & Astrophysics, 586, A81.CrossRefGoogle Scholar
Haensel, P., Potekhin, A. Y. & Yakovlev, D. G. (2007). Neutron stars 1: Equation of state and structure, volume 326. Springer Science & Business Media.CrossRefGoogle Scholar
Heyl, J. S. & Kulkarni, S. (1998). How common are magnetars? the consequences of magnetic field decay. The Astrophysical Journal Letters, 506(1), L61.CrossRefGoogle Scholar
Karino, S., Kino, M. & Miller, J. C. (2008). Funnel-Flow Accretion onto Highly Magnetized Neutron Stars and Shock Generation. Progress of Theoretical Physics, 119, 739756.CrossRefGoogle Scholar
Kiziltan, B. (2011). Reassessing the fundamentals: On the evolution, ages and masses of neutron stars. Universal-Publishers.Google Scholar
Klus, H., Ho, W. C., Coe, M. J., Corbet, R. H. & Townsend, L. J. (2013). Spin period change and the magnetic fields of neutron stars in be x-ray binaries in the small magellanic cloud. Monthly Notices of the Royal Astronomical Society, 437(4), 38633882.CrossRefGoogle Scholar
Kundt, W. (2012). Neutron stars and their birth events, volume 300. Springer Science & Business Media.Google Scholar
Masetti, N., Morelli, L., Palazzi, E., Galaz, G., Bassani, L., Bazzano, A., Bird, A., Dean, A., Israel, G., Landi, R., et al. (2006). Unveiling the nature of integral objects through optical spectroscopy-v. identification and properties of 21 southern hard x-ray sources. Astronomy & Astrophysics, 459(1), 2130.Google Scholar
Negueruela, I., Smith, D. M., Harrison, T. E. & Torrejón, J. M. (2006). The optical counterpart to the peculiar x-ray transient xte j1739–302. The Astrophysical Journal, 638(2), 982.CrossRefGoogle Scholar
Nespoli, E., Fabregat, J. & Mennickent, R. (2008). Unveiling the nature of six hmxbs through ir spectroscopy. Astronomy & Astrophysics, 486(3), 911917.CrossRefGoogle Scholar
Perna, R., Bozzo, E. & Stella, L. (2006). On the Spin-up/Spin-down Transitions in Accreting X-Ray Binaries. ApJ, 639, 363376.CrossRefGoogle Scholar
Rees, M. J. & Mészáros, P. (2000). Fe k emission from a decaying magnetar model of gamma-ray bursts. The Astrophysical Journal Letters, 545(2), L73.CrossRefGoogle Scholar
Reig, P. (2011). Be/X-ray binaries., 332, 129.Google Scholar
Rosswog, S. (2015). Sph methods in the modelling of compact objects. Living Reviews in Computational Astrophysics, 1(1), 1109.CrossRefGoogle Scholar
Scowcroft, V., Freedman, W. L., Madore, B. F., Monson, A., Persson, S., Rich, J., Seibert, M. & Rigby, J. R. (2016). The carnegie hubble program: The distance and structure of the smc as revealed by mid-infrared observations of cepheids. The Astrophysical Journal, 816(2), 49.CrossRefGoogle Scholar
Shapiro, S. L. & Teukolsky, S. A. (2008). Black holes, white dwarfs and neutron stars: the physics of compact objects. John Wiley & Sons.Google Scholar
Timmes, F., Woosley, S. & Weaver, T. A. (1995). The neutron star and black hole initial mass function. arXiv preprint astro-ph/9510136.Google Scholar
Townsend, L., Coe, M., Corbet, R. & Hill, A. (2011). On the orbital parameters of be/x-ray binaries in the small magellanic cloud. Monthly Notices of the Royal Astronomical Society, 416(2), 15561565.CrossRefGoogle Scholar
Yang, J., Laycock, S. G. T., Christodoulou, D. M., Fingerman, S., Coe, M. J. & Drake, J. J. (2017a). A Comprehensive Library of X-Ray Pulsars in the Small Magellanic Cloud: Time Evolution of Their Luminosities and Spin Periods. ApJ, 839, 119.CrossRefGoogle Scholar
Yang, J., Laycock, S. G. T., Drake, J. J., Coe, M. J., Fingerman, S., Hong, J., Antoniou, V. & Zezas, A. (2017b). A multi-observatory database of X-ray pulsars in the Magellanic Clouds. Astronomische Nachrichten, 338, 220226.CrossRefGoogle Scholar
Yang, J., Zezas, A., Coe, M. J., Drake, J. J., Hong, J., Laycock, S. G. T. & Wik, D. R. (2018). Anticorrelation between x-ray luminosity and pulsed fraction in the small magellanic cloud pulsar sxp 1323. Monthly Notices of the Royal Astronomical Society: Letters, 479(1), L1L6.CrossRefGoogle Scholar