Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-11T08:02:11.931Z Has data issue: false hasContentIssue false

Exploring galactic and extragalactic masers with LLAMA

Published online by Cambridge University Press:  07 February 2024

Tânia P. Dominici*
Affiliation:
Divisão de Astrofisica Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas, 1758, São Jose dos Campos - SP, Brazil

Abstract

LLAMA (Large Latin America Millimeter/submillimeter Array) is a new radio observatory that is being constructed in a collaboration between Argentina and Brazil. It will consist of a 12 meters diameter antenna that is being installed in Alto Chorrillos at 4850 m of altitude, in the Salta province of Argentina. Alto Chorrillos is a high-quality astronomical site similar to Chajnantor (Chile), where ALMA observatory operates. When completed, LLAMA will allow line, continuum and linear polarization observations between 35 and 700 GHz, approximately. For the first light, LLAMA will be equipped with ALMA-like receivers at bands 5 (163 - 211 GHz), 6 (211 - 275 GHz) and 9 (602 - 720 GHz). LLAMA is being planned to be a versatile astronomical facility that will serve the scientific community for the exploration of scientific topics as diverse as the molecular evolution of the Universe, black holes and their accretion disks, astrophysical jets, stellar formation and evolution, the structure of our galaxy and the Sun, planetary atmospheres and extragalactic astronomy. In this work, I will present the LLAMA project and the perspectives for this new astronomical facility in the context of the investigation of galactic and extragalactic masers.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baars, J. W. M., Lucas, R., Mangum, J. G., Lopez-Perez, J. A. 2007, IEEE Antennas Propag Mag, 49, 24 CrossRefGoogle Scholar
Bareilles, F. A., Morras, R., Hauscarriaga, F. P., Guarrera, L., Arnal, E. M., Lepine, J. R. D. 2011, BAAA, 54, 427 Google Scholar
Lepine, J. R. D., Abraham, Z., Castro, C. G. G. de, et al. 2021, An. Acad. Bras. Cienc., 93, e20200846 CrossRefGoogle Scholar
Raymond, A. W., Palumbo, D., Paine, S. N., Blackburn, L., Córdova Rosado, R., Doeleman, S. S., Farah, J. R., et al. 2021, ApJS, 253, 5 CrossRefGoogle Scholar
Reeves, R., Bovino, S., Bronfman, L., et al. 2023, in: Ossenkopf-Okada, V. et al. (eds.), Physics and Chemistry of Star Formation: The Dynamical ISM Across Time and Spatial Scales, Proceedings of the 7th Chile-Cologne-Bonn Symposium (Puerto-Varas, Chile), p. 318 Google Scholar
Scicluna, P., Kemper, F., McDonald, I., Srinivasan, S., Trejo, A., Wallström, S. H. J., Wouterloot, J. G. A., et al. 2022, MNRAS, 512, 1091 CrossRefGoogle Scholar
Stroh, M. C., Pihlström, Y. M., Sjouwerman, L. O., Lewis, M. O., Claussen, M. J., Morris, M. R., Rich, R. M. 2019, ApJS, 244, 25 CrossRefGoogle Scholar