Skip to main content
    • Aa
    • Aa

Full Sphere Axisymmetric Simulations of the Solar Dynamo

  • Dibyendu Nandy (a1), Piyali Chatterjee (a2) and Arnab Rai Choudhuri (a2)

We explore a full sphere (2D axisymmetric) kinematic solar dynamo model based on the Babcock-Leighton idea that the poloidal field is generated in the surface layers from the decay of tilted bipolar solar active regions. This model incorporates the helioseismically deduced solar rotation profile and an algorithm for buoyancy motivated from simulations of flux tube dynamics. A prescribed deep meridional circulation plays an important role in the advection of magnetic flux. We specifically address the parity issue and show that – contrary to some recent claims – the Babcock-Leighton dynamo can reproduce solar-like dipolar parity if certain reasonable conditions are satisfied in the solar interior, the most important requirement being that the poloidal field of the two hemispheres be efficiently coupled across the equator.To search for other articles by the author(s) go to:

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the International Astronomical Union
  • ISSN: 1743-9213
  • EISSN: 1743-9221
  • URL: /core/journals/proceedings-of-the-international-astronomical-union
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Abstract views

Total abstract views: 38 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th June 2017. This data will be updated every 24 hours.