Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-14T23:42:15.518Z Has data issue: false hasContentIssue false

High [OIII] luminosities from star formation and shocks in z∼6 quasars

Published online by Cambridge University Press:  09 June 2023

Bomee Lee
Affiliation:
Korea Astronomy and Space Science Institute, Daedeokdae-ro 776, Yuseong-gu, Daejeon 34055, Republic of Korea; email: bomee@kasi.re.kr
Ranga-Ram Chary
Affiliation:
MS314-6, Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use archival WISE and Spitzer photometry to derive optical emission line fluxes for a sample of distant quasars at z∼6. We find evidence for exceptionally high equivalent width [OIII] emission (rest-frame EW∼400Å) similar to that inferred for star-forming galaxies at similar redshifts. The median Hα and Hβ equivalent widths are derived to be ∼400Å and ∼100Å respectively, and are consistent with values seen among quasars in the local Universe, and at z ∼ 2. After accounting for the contribution of photoionization in the broad line regions of quasars, we suggest that the narrow [OIII] emission likely arises from feedback due to massive star-formation in the quasar host. Forthcoming mid-infrared spectroscopy with the James Webb Space Telescope will help constrain the physical conditions in quasar hosts further.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Allen, M. G., Groves, B. A., Dopita, M. A., Sutherland, R. S., Kewley, L. J. 2008, ApJs, 178, 20 10.1086/589652CrossRefGoogle Scholar
Baskin, A. and Laor, A. 2005, MNRAS, 358, 1043 10.1111/j.1365-2966.2005.08841.xCrossRefGoogle Scholar
Chary, R.-R., Stern, D., & Eisenhardt, P. 2005, ApJL, 635, L5. doi: 10.1086/499205 CrossRefGoogle Scholar
Endsley, R., Stark, D. P., Chevallard, J., et al. 2021, MNRAS, 500, 5229. doi: 10.1093/mnras/staa3370 CrossRefGoogle Scholar
Faisst, A. L., Capak, P., Hsieh, B. C., et al. 2016, ApJ, 821, 122. doi: 10.3847/0004-637X/821/2/122 CrossRefGoogle Scholar
Jun, H. D., Im, M., Lee, H. M., Ohyama, Y. et al, 2015, ApJ, 806, 109 10.1088/0004-637X/806/1/109CrossRefGoogle Scholar
Kakkad, D., Mainieri, V., Vietri, G., et al. 2020, A&A, 642, A147. doi: 10.1051/0004-6361/202038551 Google Scholar
Lee, B., & Chary, R., 2022, arXiv:2207.07290Google Scholar
Leipski, C., Meisenheimer, K., Walter, F., et al. 2014, ApJ, 785, 154. doi: 10.1088/0004-637X/785/2/154 CrossRefGoogle Scholar
Ross, N. P., Cross, N. J. G. 2020, MNRAS, 494, 789 10.1093/mnras/staa544CrossRefGoogle Scholar
Shen, Y., Richards, G. T., Strauss, M. A., et al. 2011, ApJs 194, 45. doi: 10.1088/0067-0049/194/2/45 CrossRefGoogle Scholar
Vietri, G., Mainieri, V., Kakkad, D., et al. 2020, A&A, 644, A175. doi: 10.1051/0004-6361/202039136 Google Scholar
Zakamska, N. L., Lampayan, K., Petric, A., et al. 2016, MNRAS, 455, 4191. doi: 10.1093/mnras/stv2571 CrossRefGoogle Scholar