Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-fpcrz Total loading time: 0.387 Render date: 2022-06-26T12:14:05.689Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Hubble, Chandra and Keck Constraints on Massive Galaxy Clusters at z=0.2 and z=0.5

Published online by Cambridge University Press:  15 June 2005

Graham P. Smith
Affiliation:
California Institute of Technology, Department of Astronomy, Mail Code 105–24, Pasadena, CA 91125, USA. email: gps@astro.caltech.edu
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I present recent observations from two Hubble Space Telescope(HST)/ACS programs that target the most X–ray luminous and thus (presumably) most massive galaxy clusters at $z{=}0.5$ – the highest redshift at which complete, well–defined samples of such rare systems are available. The first program (GO:9836, PI: R.S. Ellis) exploits a huge mosaic of 41 ACS pointings spanning a 10 Mpc region centered on MS0451-03. This is the largest contiguous space–based image of a cluster to date. I describe a preliminary weak–lensing analysis and a new Keck/DEIMOS redshift catalog of 1000 galaxies in this field. The second program (GO:9722, PI: H. Ebeling) studies the core regions of the twelve most luminous clusters at $z{\ge}0.5$ from the MAssive Cluster Survey (MACS; Ebeling et al. 2001). Multi–color ACS observations in combination with recent Keck/LRIS spectroscopy of gravitational arcs constrain the distribution of mass in the cluster cores, thus laying the foundation for detailed multi–diagnostic (lensing, X–ray, near–infrared, SZE) investigation of this sample. For example, it is of particular interest to explore how the structure and state of relaxation of massive clusters evolved between this sample at $z{\ge}0.5$ that measured by Smith et al. (2004, astro–ph/0403588) at $z{=}0.2$.To search for other articles by the author(s) go to: http://adsabs.harvard.edu/abstract_service.html

Type
Contributed Papers
Copyright
© 2004 International Astronomical Union
You have Access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Hubble, Chandra and Keck Constraints on Massive Galaxy Clusters at z=0.2 and z=0.5
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Hubble, Chandra and Keck Constraints on Massive Galaxy Clusters at z=0.2 and z=0.5
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Hubble, Chandra and Keck Constraints on Massive Galaxy Clusters at z=0.2 and z=0.5
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *