Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-16T09:26:22.920Z Has data issue: false hasContentIssue false

The Impact of CoRoT and Kepler on Eclipsing Binary Science

Published online by Cambridge University Press:  23 April 2012

Carla Maceroni
Affiliation:
INAF–Osservatorio Astronomico di Roma, via Frascati 33, I-00040, Monteporzio C. (RM), Italy email: maceroni@oa-roma.inaf.it
Davide Gandolfi
Affiliation:
ESA Estec, Keplerlaan 1, 2201 AZ Noordwijk, Netherlands email: dgandolf@rssd.esa.int
Josefina Montalbán
Affiliation:
Institut d'Astrophysique et Géophysique Université de Liège, Allée du 6 Aôut, B-4000 Liège, Belgiumj.montalban@ulg.ac.be
Conny Aerts
Affiliation:
Institute of Astronomy, K.U.Leuven, Celestijnenlaan 200D, B3001 Leuven, Belgium email: conny@ster.kuleuven.be
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The CoRoT and Kepler space missions have opened a new era in eclipsing binary research. While specifically designed for exoplanet search, they offer as by-products the discovery and monitoring of variable stars, in great majority eclipsing binaries (EB). The missions are therefore providing thousands of EB light curves of unprecedented accuracy (typically a few hundred parts per million, ppm), with regular sampling (from 1s to 29m), extending over time spans of months, and with a very high duty cycle (>90%).

Thanks to this excellent photometry, research topics as asteroseismology of EB components are quickly developing, and physical phenomena such as doppler boosting, theoretically predicted but extremely difficult to observe from the ground, have been unambiguously detected. We present the main properties of the Corot and Kepler EB samples and briefly review the highlights of the missions in this field.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Aigrain, S., et al. , 2009, A&A, 506, 425Google Scholar
Bloemen, S., et al. , 2011, MNRAS, 410, 1787Google Scholar
Borucki, W. J., et al. , 2010, Science, 327, 977CrossRefGoogle Scholar
Cabrera, J., et al. , 2009, A&A, 506, 501Google Scholar
Carpano, S., et al. , 2009, A&A, 506, 491Google Scholar
Carone, L., et al. , 2011, in preparationGoogle Scholar
Carter, J. A., et al. , 2011, Science, 331, 562CrossRefGoogle Scholar
Debosscher, J., et al. , 2009, A&A, 506, 519Google Scholar
Derekas, A., et al. , 2011, Science, 332, 216CrossRefGoogle Scholar
De Ridder, J., et al. , 2009, Nature, 459, 398CrossRefGoogle Scholar
Heacox, W. D. 1998, AJ, 115, 325CrossRefGoogle Scholar
Hekker, S., et al. , 2010, ApJ, 713, L187CrossRefGoogle Scholar
Kawaler, S. D., et al. , 2010, MNRAS, 409, 1509CrossRefGoogle Scholar
van Kerkwijk, M. H., Rappaport, S. A., Breton, R. P., Justham, S., Podsiadlowski, P., & Han, Z. 2010, ApJ, 715, 51CrossRefGoogle Scholar
Kjeldsen, H. & Bedding, T. R. 1995, A&A, 293, 87Google Scholar
Koch, D. G., et al. , 2010, ApJ (Letters), 713, L79CrossRefGoogle Scholar
Loeb, A. & Gaudi, B. S. 2003, ApJ, 588, L117CrossRefGoogle Scholar
Maceroni, C., et al. , 2009, A&A, 508, 1375Google Scholar
Maceroni, C. 2010, ASP-CS, 435, 5Google Scholar
Maceroni, C., Cardini, D., Damiani, C., Gandolfi, D., Debosscher, J., Hatzes, A., Guenther, E. W., & Aerts, C. 2010, arXiv 1004.1525Google Scholar
Mazeh, T., Tamuz, O., & North, P. 2006, Ap&SS, 304, 343Google Scholar
Mazeh, T. & Faigler, S. 2010, A&A, 521, L59Google Scholar
Østensen, R. H., et al. , 2010, MNRAS, 408, L51CrossRefGoogle Scholar
Prša, A., et al. , 2011, ApJ, 141, 83CrossRefGoogle Scholar
Slawson, R. W., et al. , 2011, arXiv 1103.1659Google Scholar
Sarro, L. M., Debosscher, J., López, M., & Aerts, C. 2009, A&A, 494, 739Google Scholar
Welsh, W. F., et al. , 2011, arXiv 1102.1730Google Scholar
Zucker, S., Mazeh, T., & Alexander, T. 2007, ApJ, 670, 1326CrossRefGoogle Scholar