Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-27T04:53:18.225Z Has data issue: false hasContentIssue false

The Isochronal Age Scale of Young Moving Groups in the Solar Neighbourhood

Published online by Cambridge University Press:  27 January 2016

Cameron P. M. Bell
Affiliation:
Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627, USA email: cbell@pas.rochester.edu
Eric E. Mamajek
Affiliation:
Department of Physics & Astronomy, University of Rochester, Rochester, NY 14627, USA email: cbell@pas.rochester.edu
Tim Naylor
Affiliation:
School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a self-consistent, absolute isochronal age scale for young (≲ 200 Myr), nearby (≲ 100 pc) moving groups, which is consistent with recent lithium depletion boundary ages for both the β Pic and Tucana-Horologium moving groups. This age scale was derived using a set of semi-empirical pre-main-sequence model isochrones that incorporate an empirical colour-Teff relation and bolometric corrections based on the observed colours of Pleiades members, with theoretical corrections for the dependence on logg. Absolute ages for young, nearby groups are vital as these regions play a crucial role in our understanding of the early evolution of low- and intermediate-mass stars, as well as providing ideal targets for direct imaging and other measurements of dusty debris discs, substellar objects and, of course, extrasolar planets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Baraffe, I., Homeier, D., Allard, F., & Chabrier, G. 2015, A&A, 577, 42Google Scholar
Bell, C. P. M., Naylor, T., Mayne, N. J., et al. 2012, MNRAS, 424, 3178CrossRefGoogle Scholar
Bell, C. P. M., Naylor, T., Mayne, N. J., et al. 2013, MNRAS, 434, 806Google Scholar
Bell, C. P. M., Rees, J. M., Naylor, T., et al. 2014, MNRAS, 445, 3496Google Scholar
Bell, C. P. M., Mamajek, E. E., & Naylor, T. 2015, submitted to MNRASGoogle Scholar
Binks, A. S. & Jeffries, R. D. 2014, MNRAS, 438, L11CrossRefGoogle Scholar
Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127Google Scholar
Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources, 2246, 0Google Scholar
Dotter, A., Chaboyer, B., Jevremović, D., et al. 2008, ApJS, 178, 89CrossRefGoogle Scholar
Hillenbrand, L. A. & White, R. J. 2004, ApJ, 604, 741Google Scholar
Kraus, A. L., Shkolnik, E. L., Allers, K. N., & Liu, M. C. 2014, AJ, 147, 146Google Scholar
Malo, L., Doyon, R., Lafrenière, D., et al. 2013, ApJ, 762, 88CrossRefGoogle Scholar
Malo, L., Artigau, É., Doyon, R., et al. 2014a, ApJ, 788, 81Google Scholar
Malo, L., Doyon, R., Feiden, G. A., et al. 2014b, ApJ, 792, 37CrossRefGoogle Scholar
Mamajek, E. E. 2005, ApJ, 634, 1385CrossRefGoogle Scholar
Mamajek, E. E. 2007, IAU Symposium 237, Triggered Star Formation in a Turbulent ISM, 442Google Scholar
Mamajek, E. E. & Bell, C. P. M. 2014, MNRAS, 445, 2169Google Scholar
Naylor, T. & Jeffries, R. D. 2006, MNRAS, 373, 1251CrossRefGoogle Scholar
Naylor, T. 2009, MNRAS, 399, 432Google Scholar
Shvonski, A. J., Mamajek, E. E., Meyer, M. R., & Kim, J. S. 2010, Bulletin of the American Astronomical Society, Vol. 42, #428.22Google Scholar
Soderblom, D. R., Hillenbrand, L. A., Jeffries, R. D., et al. 2014, Protostars and Planets VI, University of Arizona Press, 219Google Scholar
Tognelli, E., Prada Moroni, P. G., & Degl'Innocenti, S. 2011, A&A, 533, 109Google Scholar
Torres, C. A. O., Quast, G. R., Melo, C. H. F., & Sterzik, M. F. 2008, Handbook of Star Forming Regions, Volume II: The Southern Sky, 757Google Scholar
Zuckerman, B., Rhee, J. H., Song, I., & Bessell, M. S. 2011, ApJ, 732, 61Google Scholar