Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T11:53:21.312Z Has data issue: false hasContentIssue false

Kyiv monitoring program of spectral line variations with the 11-year cycle

Published online by Cambridge University Press:  27 November 2018

Nataliia Shchukina
Affiliation:
Main Astronomical Observatory, National Academy of Sciences, 27 Zabolotnogo str., Kyiv, 03143, Ukraine email: shchukin@mao.kiev.ua
Sergej Osipov
Affiliation:
Main Astronomical Observatory, National Academy of Sciences, 27 Zabolotnogo str., Kyiv, 03143, Ukraine email: shchukin@mao.kiev.ua
Roman Kostyk
Affiliation:
Main Astronomical Observatory, National Academy of Sciences, 27 Zabolotnogo str., Kyiv, 03143, Ukraine email: shchukin@mao.kiev.ua
Myroslav Stodilka
Affiliation:
Astronomical Observatory, Ivan Franko National University, 8 Kyryla and Mefodiya str., Lviv, 79005, Ukraine email: sun@astro.franko.lviv.ua
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Kyiv program of monitoring of long-term variation of solar spectral lines at the horizontal solar telescope of the Main Astronomical Observatory of Ukraine is described. The aim of the program is to clarify the issue how the physical parameters of the quiet solar atmosphere change over the 11-year cycle of solar activity. The diagnostics of the atmospheric variation includes analysis of more than 40 spectral lines of neutral and ionized chemical elements observed at the solar disk and at the limb near north and south poles with high spectral resolution. The results of monitoring show that during 2012–2017 a line core depths and a line full widths at half maximum respond to the cycle modulation of the global unsigned magnetic field of the Sun. Such a correlation can be explained by assuming that temperature gradient of the solar photosphere is growing with solar activity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Danilovic, S., Solanki, S. K., Livingston, W., Krivova, N., & Vince, I., 2016, AA, 587, A33Google Scholar
Doyle, J. G., Jevremović, D., Short, C. I., Hauschildt, P. H., Livingston, W., & Vince, I., 2001, AA, 369, L13Google Scholar
Gutrovenko, E. A. & Kostik, R. I. 1989, in: Fraunhofer Spectrum and the System of Solar Oscillator Strengths (Naukova Dumka: Kiev)Google Scholar
Keller, C. U., Harvey, J. W., & Giampara, M. S. 2003, in: Keil, S. L. & Avakyan, S. V. (eds.), Innovate Telescopes and Instrumentation for Solar Astrophysics (Proc. SPIE 4853), p. 194Google Scholar
Kostik, R. I. & Shchukina, N. G. 1997, in: Schmieder, B., del Toro Iniesta, J. C. & Vazquéz, M. (eds.), Advances in Physics of Sunspots (ASP Conf. Ser. 118), p. 372Google Scholar
Krat, V. A. & Kokhan, E. K., 1984, Transactions of the Main Astronomcal Observatory at Pulkovo, 202, 49Google Scholar
Livingston, W. & Holweger, H., 1982, ApJ, 252, 375Google Scholar
Livingston, W., Wallace, L., White, O. R., & Giampapa, M. S., 2007, ApJ, 657, 1137Google Scholar
Livingston, W., White, O. R., Wallace, L., & Harvey, J., 2010, S. A. It., 81, 643Google Scholar
Osipov, S. N., 2015, Kinem. Phys. Celest. Bodies, 31, 261Google Scholar
Osipov, S. N., Kostik, R. I., & Shchukina, N. G. 2017, Journal of Phys. Studies, 21, No. 1/2, 1901 (see pdf-version http://physics.lnu.edu.ua/jps)Google Scholar
Stodilka, M. I., 2003, Kinem. Phys. Celest. Bodies, 19, 334Google Scholar