Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T22:16:53.068Z Has data issue: false hasContentIssue false

Line Intensity Mapping during the Epoch of Reionization

Published online by Cambridge University Press:  08 May 2018

Marta B. Silva
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747AD Groningen, the Netherlands
Saleem Zaroubi
Affiliation:
Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747AD Groningen, the Netherlands Department of Natural Sciences, The Open University of Israel, 1 University Road, P.O. Box 808, Ra’anana 4353701, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Characterizing the properties and the evolution of the first stars and galaxies is a challenging task for traditional galaxy surveys since they are sensitivity limited and can only detect the brightest light sources. Three-dimensional intensity mapping (IM) of transition lines can be a valuable alternative to study the high redshift Universe given that this technique avoids sensitivity limitation problems by measuring the overall emission of a line, with a low resolution, without resolving its sources. While 21cm line IM surveys probe neutral hydrogen gas and can, therefore, be used to probe the state of the IGM and the evolution of the ionization field during the Epoch of Reionization (EoR). IM surveys of other lines, such as CO, CII, Ly-alpha or H-alpha, can be used to probe the galaxies which emitted most of the ionizing radiation responsible for the EoR. These lines will trace the different ISM gas phases, the excitation state of this gas, its metallicity, etc. This study addresses IM of multiple transition lines and how it can be used to probe the EoR and to constrain the redshift evolution of galaxy properties.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Chang, T.-C., Pen, U.-L., Bandura, K., & Peterson, J. B., 2010, Nature, 466, 463CrossRefGoogle Scholar
Cooray, A., Bock, J., Burgarella, D., Chary, R., Chang, T.-C., Doré, O., Fazio, G., Ferrara, A., Gong, Y., Santos, M., Silva, M., & Zemcov, M., 2016, arXiv:1602.05178Google Scholar
Crites, A. T., Bock, J., Bradford, C. M., Chang, T. C., Cooray, A. R. et al., 2014., Proc. SPIE, 9153: 9153, 9, doi: 10.1117/12.2057207Google Scholar
Fonseca, J., Silva, M. B., Santos, M. G., & Cooray, A., 2017, MNRAS, 464, 1948CrossRefGoogle Scholar
Gong, Y., Cooray, A., Silva, M., Santos, M. G., Bock, J., Bradford, C. M., & Zemcov, M., 2012, ApJ, 745, 49CrossRefGoogle Scholar
Hill, G. J., Gebhardt, K., Komatsu, E., Drory, N., et al., 2008, ASPC, 399, 115 HGoogle Scholar
Li, T. Y., Wechsler, R. H., Devaraj, K., Church, S. E., et al., 2016, ApJ, 817, 169CrossRefGoogle Scholar
Lidz, A., Furlanetto, S. R., Oh, S. P., Aguirre, J., et al., 2011, ApJ, 741, 70CrossRefGoogle Scholar
Madau, P., Meiksin, A., & Rees, M. J., 1997, ApJ, 475, 429CrossRefGoogle Scholar
Pullen, A. R. & Doré, O., Bock, J., 2014, ApJ, 786, 111CrossRefGoogle Scholar
Silva, M. B., Santos, M. G., Gong, Y., Cooray, A., & Bock, J., 2013, ApJ, 763, 132CrossRefGoogle Scholar
Silva, M., Santos, M. G., Cooray, A., & Gong, Y., 2015, ApJ, 806, 209CrossRefGoogle Scholar
Silva, M. B., Zaroubi, S., Kooistra, R. & Cooray, A. 2017, ArXiv: 1711.09902Google Scholar
Uzgil, B. D., Aguirre, J. E., Bradford, C. M., & Lidz, A., 2014, ApJ, 793, 116CrossRefGoogle Scholar
Visbal, E. & Loeb, A., 2010, JCAP, 1011, 016CrossRefGoogle Scholar