Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-29T16:34:14.367Z Has data issue: false hasContentIssue false

The magnetic field of IRAS 16293-2422 as traced by shock-induced H2O masers

Published online by Cambridge University Press:  24 July 2012

Felipe O. Alves
Argelander-Institut für Astronomie, University of Bonn, Auf dem Hügel 71, D-53121, Bonn, Germany email:
Wouter H. T. Vlemmings
Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala, Sweden email:
Josep M. Girart
Institut de Ciències de l'Espai (IEEC-CSIC), Campus UAB, Facultat de Ciències, C5 par 2a, 08193 Bellaterra, Catalunya, Spain email:
José M. Torrelles
Institut de Ciències de l'Espai (CSIC)-UB/IEEC, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain email:
Rights & Permissions [Opens in a new window]


Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

H2O masers are important magnetic field tracers in very high density gas. We show one of the first magnetic field determinations at such high density in a low-mass protostar: IRAS 16293-2422. We used the Very Large Array (VLA) to carry out spectro-polarimetric observations of the 22 GHz Zeeman emission of H2O masers. A blend of at least three maser features can be inferred from our data. They are excited in zones of compressed gas produced by shocks between the outflows ejected by this source and the ambient gas. The post-shock particle density is in the range 1 - 3 × 109 cmt−3, and the line-of-sight component of the magnetic field is estimated as ~ 113 mG. The outflow dynamics is likely magnetically dominated.

Contributed Papers
Copyright © International Astronomical Union 2012


Chandler, C. J., Brogan, C. L., Shirley, Y. L., & Loinard, L. 2005, ApJ, 632, 371Google Scholar
Claussen, M. J., Wilking, B. A., Benson, P. J., et al. 1996, ApJS, 106, 111Google Scholar
Elitzur, M., Hollenbach, D. J., & McKee, C. F. 1989, ApJ, 346, 983CrossRefGoogle Scholar
Fiebig, D. & Guesten, R. 1989, A&A, 214, 333Google Scholar
Furuya, R. S., Kitamura, Y., Wootten, A., Claussen, M. J., & Kawabe, R. 2003, ApJS, 144, 71CrossRefGoogle Scholar
Goodman, A. A., Jones, T. J., Lada, E. A., & Myers, P. C. 1995, ApJ, 448, 748Google Scholar
Imai, H., Nakashima, K., Bushimata, T., et al. 2007, PASJ, 59, 1107Google Scholar
Jørgensen, J. K., Bourke, T. L., Nguyen Luong, Q., & Takakuwa, S. 2011, A&A, 534, A100Google Scholar
Kaufman, M. J. & Neufeld, D. A. 1996, ApJ, 456, 250Google Scholar
Lazarian, A., Goodman, A. A., & Myers, P. C. 1997, ApJ, 490, 273CrossRefGoogle Scholar
Nedoluha, G. E. & Watson, W. D. 1992, ApJ, 384, 185Google Scholar
Rao, R., Girart, J. M., Marrone, D. P., Lai, S.-P., & Schnee, S. 2009, ApJ, 707, 921CrossRefGoogle Scholar
Ristorcelli, I., Falgarone, E., Schöier, F., et al. 2005, in: Lis, D. C., Blake, G. A. & Herbst, E. (eds.), Astrochemistry: Recent Successes and Current Challenges, Proc. IAU Symposium No. 231, p. 227Google Scholar
Vlemmings, W. H. T., Diamond, P. J., & van Langevelde, H. J. 2002, A&A, 394, 589Google Scholar
Vlemmings, W. H. T., Diamond, P. J., van Langevelde, H. J., & Torrelles, J. M. 2006, A&A, 448, 597Google Scholar