Skip to main content Accessibility help
×
Home
Hostname: page-component-5f95dd588d-b59hz Total loading time: 0.226 Render date: 2021-10-28T18:48:03.562Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

MAGRITTE: a new multidimensional accelerated general-purpose radiative transfer code

Published online by Cambridge University Press:  30 December 2019

Frederik De Ceuster
Affiliation:
Dept. of Physics and Astronomy, University College London, London, WC1E 6BT, UK email: frederik.deceuster@kuleuven.be Dept. of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
Jeremy Yates
Affiliation:
Dept. of Physics and Astronomy, University College London, London, WC1E 6BT, UK email: frederik.deceuster@kuleuven.be
Peter Boyle
Affiliation:
School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, UK
Leen Decin
Affiliation:
Dept. of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
James Hetherington
Affiliation:
The Alan Turing Institute, Euston Road, London NW1 2DB, UK
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magritte is a new deterministic radiative transfer code. It is a ray-tracing code that computes the radiation field by solving the radiative transfer equation along a fixed set of rays for each grid cell. Its ray-tracing algorithm is independent of the type of input grid and thus can handle smoothed-particle hydrodynamics (SPH) particles, structured as well as unstructured grids. The radiative transfer solver is highly parallelized and optimized to have well scaling performance on several computer architectures. Magritte also contains separate dedicated modules for chemistry and thermal balance. These enable it to self-consistently model the interdependence between the radiation field and the local thermal and chemical states. The source code for Magritte will be made publically available at github.com/Magritte-code.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Boyle, P., Yamaguchi, A., Cossu, G., & Portelli, A. 2016, Proceedings of Science 251 Lattice 2015Google Scholar
Feautrier, P. 1964, Comptes Rendus Academie des Sciences (serie non specifiee) 258Google Scholar
Rybicki, G. B. & Hummer, D. G. 1991, Astron. Astrophys. 245, 171 Google Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

MAGRITTE: a new multidimensional accelerated general-purpose radiative transfer code
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

MAGRITTE: a new multidimensional accelerated general-purpose radiative transfer code
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

MAGRITTE: a new multidimensional accelerated general-purpose radiative transfer code
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *