Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-29T17:17:22.553Z Has data issue: false hasContentIssue false

Muti-technique observations and modelling of the gas and dust phases of protoplanetary disks

Published online by Cambridge University Press:  21 October 2010

C. Pinte
Affiliation:
School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom Laboratoire d'Astrophysique de Grenoble, CNRS/UJF UMR 5571, 414 rue de la Piscine, B.P. 53, F-38041 Grenoble Cedex 9, France
F. Ménard
Affiliation:
Laboratoire d'Astrophysique de Grenoble, CNRS/UJF UMR 5571, 414 rue de la Piscine, B.P. 53, F-38041 Grenoble Cedex 9, France
G. Duchěne
Affiliation:
Laboratoire d'Astrophysique de Grenoble, CNRS/UJF UMR 5571, 414 rue de la Piscine, B.P. 53, F-38041 Grenoble Cedex 9, France Astronomy Dept, UC Berkeley, Berkeley CA 94720-3411, USA
J. C. Augereau
Affiliation:
Laboratoire d'Astrophysique de Grenoble, CNRS/UJF UMR 5571, 414 rue de la Piscine, B.P. 53, F-38041 Grenoble Cedex 9, France
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A wide range of high-quality data is becoming available for protoplanetary disks. From these data sets many issues have already been addressed, such as constraining the large scale geometry of disks, finding evidence of dust grain evolution, as well as constraining the kinematics and physico-chemical conditions of the gas phase. Most of these results are based on models that emphasise fitting observations of either the dust component (SEDs or scattered light images or, more recently, interferometric visibilities), or the gas phase (resolved maps in molecular lines). In this contribution, we present a more global approach which aims at interpreting consistently the increasing amount of observational data in the framework of a single model, in order to to better characterize both the dust population and the gas disk properties, as well as their interactions. We present results of such modeling applied to a few disks (e.g. IM Lup, see Figure) with large observational data-sets available (scattered light images, polarisation maps, IR spectroscopy, X-ray spectrum, CO maps). These kinds of multi-wavelengths studies will become very powerful in the context of forthcoming instruments such as Herschel and ALMA.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010