Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T21:31:20.286Z Has data issue: false hasContentIssue false

Optical and near-infrared flares in GRB afterglows

Published online by Cambridge University Press:  05 September 2012

Thomas Krühler*
Affiliation:
Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark. email: tom@dark-cosmology.dk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Among the diversities in the very early evolution of GRB afterglows are bright optical/near-infrared flares before or superimposed onto an otherwise smoothly decaying afterglow light curve. A lot has been learned about GRBs by using an optical flare or lack thereof as a diagnostic of the emission mechanisms and outflow conditions. In this contribution I will review the observational properties of rising and decaying light-curves in GRB afterglows, discuss their possible physical origins, and highlight in which way they help in understanding GRB and afterglows physics.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Beloborodov, A. M. 2005, ApJL, 618, L13CrossRefGoogle Scholar
Burrows, D. N. et al. 2005, Science, 309, 1833CrossRefGoogle Scholar
Gehrels, N. et al. 2004, ApJ, 611, 1005CrossRefGoogle Scholar
Cenko, S. B., et al. 2009, ApJ, 693, 1484CrossRefGoogle Scholar
Ghisellini, G. et al. 2007, ApJ, 685, 75CrossRefGoogle Scholar
Greiner, J. et al. 2008, PASP, 120, 405CrossRefGoogle Scholar
Greiner, J. et al. 2009, ApJ, 693, 1912CrossRefGoogle Scholar
Ioka, K., et al. 2005, ApJ, 631, 429CrossRefGoogle Scholar
Kann, D. A., et al. 2010, ApJ, 720, 1513CrossRefGoogle Scholar
Krühler, J. et al. 2008, ApJ, 685, 376CrossRefGoogle Scholar
Krühler, J. et al. 2009a, ApJ, 697, 758CrossRefGoogle Scholar
Krühler, J. et al. 2009b, A&A, 508, 593Google Scholar
Krühler, J. et al. 2011, A&A, 534, 108Google Scholar
Kumar, P. & Piran, T. 2000, ApJ, 535, 152CrossRefGoogle Scholar
Molinari, E. et al. 2007, A&A, 469, 13Google Scholar
Nakar, E. & Piran, T. 2004, MNRAS, 353, 647CrossRefGoogle Scholar
Nardini, M. et al. 2010, MNRAS, 403, 1131CrossRefGoogle Scholar
Nardini, M. et al. 2011, A&A, 535, 57Google Scholar
Panaitescu, A. & Vestrand, W. T. 2008, MNRAS, 387, 497CrossRefGoogle Scholar
Pedersen, H. et al. 1998, ApJ, 496, 311CrossRefGoogle Scholar
Peng, F. et al. 2005, ApJ, 626, 966CrossRefGoogle Scholar
Perley, D. et al. 2010, MNRAS, 406, 2473CrossRefGoogle Scholar
Rees, M. J. & Meszaros, P. 1998, ApJL, 496, 1CrossRefGoogle Scholar
Roming, P. W. A. et al. 2006, ApJ, 652, 1416CrossRefGoogle Scholar
Stanek, K. Z. et al. 2007, ApJ, 654, 21CrossRefGoogle Scholar
Vlasis, A. et al. 2011, MNRAS, 415, 279CrossRefGoogle Scholar
Wang, X. & Loeb, A. 2000, ApJ, 535, 788CrossRefGoogle Scholar
Zhang, B., Kobayashi, S., & Mészáros, P. 2003, ApJ, 595, 950CrossRefGoogle Scholar