Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T02:29:55.063Z Has data issue: false hasContentIssue false

The Puzzling Source at the Center of the SNR RCW 103

Published online by Cambridge University Press:  04 June 2018

A. Borghese
Affiliation:
Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, the Netherlands email: a.borghese@uva.nl
N. Rea
Affiliation:
Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, the Netherlands email: a.borghese@uva.nl Institute of Space Sciences (IEEC-CSIC), Campus UAB, Barcelona, Spain
F. Coti Zelati
Affiliation:
Institute of Space Sciences (IEEC-CSIC), Campus UAB, Barcelona, Spain
P. Esposito
Affiliation:
Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, the Netherlands email: a.borghese@uva.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1E 161348-5055 (1E 1613), the source at the center of the supernova remnant RCW 103, has defied any easy classification since its discovery, owing to its long-term variability (a factor of ~ 100 in flux on time scales from months to years) and a periodicity of 6.67 hr with a variable light curve profile across different flux levels. On June 2016, 1E 1613 emitted a magnetar-like millisecond burst of hard X-rays accompanied with a factor ~ 100 brightening in the persistent soft X-ray emission. The duration and spectral decomposition of the burst, the discovery of a hard X-ray tail in the spectrum, and the long-term outburst history suggest that 1E 1613 is an isolated magnetar and the periodicity of 6.67 hr is the rotational spin period, making 1E 1613 the slowest neutron star ever detected.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Beloborodov, A. M., 2009, ApJ, 703, 1044CrossRefGoogle Scholar
Bhadkamkar, H., & Ghosh, P., 2009, A&A, 506, 1297Google Scholar
Carter, L. M., Dickel, J. R., & Bomans, D. J., 1997, PASP, 109, 990Google Scholar
Caswell, J. L., Murray, J. D., Roger, R. S., et al., 1975, A&A, 45, 239Google Scholar
Chevalier, R. A., 1999, ApJ, 511, 798Google Scholar
D’Aì, A., Evans, P., Burrows, D. N., et al., 2016, MNRAS, 463, 2394Google Scholar
De Luca, A., Caraveo, P. A., Mereghetti, S. et al. 2006, Science, 313, 814Google Scholar
Esposito, P., Turolla, R., De Luca, A. et al. 2011, MNRAS, 418, 170CrossRefGoogle Scholar
Ho, W. C. G., & Andersson, N., 2017, MNRAS, 464, L65Google Scholar
Olausen, S. A., & Kaspi, V. M., 2014, ApJS, 212, 6Google Scholar
Rea, N., Borghese, A., Esposito, P., et al., 2016, ApJ, 828, L13Google Scholar
Tuohy, I., & Garmire, G., 1980, ApJ, 239, L107Google Scholar