Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T00:17:57.909Z Has data issue: false hasContentIssue false

Radiative feedback of low-Lbol/LEdd AGNs

Published online by Cambridge University Press:  29 January 2021

Fu-Guo Xie*
Affiliation:
Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, 80 Nandan Road, Shanghai200030, China email: fgxie@shao.ac.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

AGN feedback, through either radiation or kinematics by expelled medium, plays a crucial role in the coevolution of supermassive black hole (SMBH) and its host galaxy. The nuclei spend most of their time as low-luminosity AGNs (LLAGNs), whose spectra are distinctive to bright AGNs, and the feedback is the hot mode (also named kinetic mode). We thus investigate the radiative heating in the hot mode. We calculate the value of “Compton temperature” Tc, which defines the heating capability of the radiation at given flux, and find that Tc∼(5−15)×107 K, depending on the spectrum of individual LLAGNs. This work provides a cheap way to include the radiative heating of LLAGNs in the study of AGN feedback.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Asmus, D., Gandhi, P., Smette, A., Hönig, S. F., Duschl, W. J., et al. 2011, A&A, 536, 36Google Scholar
Asmus, D., Hönig, S. F., Gandhi, P., Smette, A., Duschl, W. J., et al. 2014, MNRAS, 439, 1648CrossRefGoogle Scholar
Bu, D. & Yang, X. 2019a, MNRAS, 484, 1724CrossRefGoogle Scholar
Bu, D. & Yang, X. 2019b, ApJ, 871, 13810.3847/1538-4357/aaf807CrossRefGoogle Scholar
Ciotti, L. & Ostriker, J. P. 2001, ApJ, 551, 13110.1086/320053CrossRefGoogle Scholar
Ciotti, L., Ostriker, J. P., & Proga, D., et al. 2010, ApJ, 717, 70810.1088/0004-637X/717/2/708CrossRefGoogle Scholar
Connolly, S. D., Mc Hardy, I. M., Skipper, C. J., Emmanoulopoulos, D., et al. 2016, MNRAS, 459, 396310.1093/mnras/stw878CrossRefGoogle Scholar
Done, C., Gierliński, M., & Kubota, A. 2007, A&Ap. Rev., 15, 1Google Scholar
Emmanoulopoulos, D., Papadakis, I. E., McHardy, I. M., Arévalo, P., Calvelo, D. E., Uttley, P., et al. 2012, MNRAS, 424, 1327CrossRefGoogle Scholar
Eracleous, M., Hwang, J. A., Flohic, H. M. L., et al. 2010, ApJS, 187, 135CrossRefGoogle Scholar
Fabian, A. C. 2012, ARA&A, 50, 45510.1146/annurev-astro-081811-125521CrossRefGoogle Scholar
Gan, Z., Yuan, F., Ostriker, J. P., Ciotti, L., & Novak, G. S. 2014, ApJ, 789, 150CrossRefGoogle Scholar
Gan, Z., Ciotti, L., Ostriker, J. P., Yuan, F., et al. 2019, ApJ, 872, 167Google Scholar
Gaspari, M., Ruszkowski, M., & Oh, S. P. 2013, MNRAS, 432, 340110.1093/mnras/stt692CrossRefGoogle Scholar
González-Martn, O., Masegosa, J., Hernán-Caballero, A., et al. 2017, ApJ, 841, 37CrossRefGoogle Scholar
González-Martn, O., Masegosa, J., Márquez, I., et al. 2015, A&A, 578, 74Google Scholar
Guilbert, P. W. 1986, MNRAS, 218, 171CrossRefGoogle Scholar
Heckman, T. M. & Best, P. N. 2014, ARA&A, 52, 58910.1146/annurev-astro-081913-035722CrossRefGoogle Scholar
Ho, L. C. 2008, ARA&A, 46, 475CrossRefGoogle Scholar
Kormendy, J. & Ho, L. C. 2013, ARA&A, 51, 511CrossRefGoogle Scholar
Miyakawa, T., Yamaoka, K., Homan, J., et al. 2008, PASJ, 60, 637CrossRefGoogle Scholar
Ostriker, J. P., Choi, E., Ciotti, L., et al. 2010, ApJ, 722, 642CrossRefGoogle Scholar
Pahari, M., McHardy, I. M., Mallick, L., Dewangan, G. C., Misra, R. et al. 2017, MNRAS, 470, 3239CrossRefGoogle Scholar
Rani, P., Stalin, C. S., & Goswami, K. D. 2019, MNRAS, 484, 5113CrossRefGoogle Scholar
Ricci, C., Ho, L. C., Fabian, A. C., et al. 2018, MNRAS, 480, 181910.1093/mnras/sty1879CrossRefGoogle Scholar
Sazonov, S. Y., Ostriker, J. P., Sunyaev, R. A., et al. 2004, MNRAS, 347, 144CrossRefGoogle Scholar
Soldi, S., Beckmann, V., Baumgartner, W. H., et al. 2014, A&A, 563, 57Google Scholar
Tombesi, F., Cappi, M., Reeves, J. N., et al. 2013, MNRAS, 430, 110210.1093/mnras/sts692CrossRefGoogle Scholar
Ursini, F., Petrucci, P.-O., Matt, G., et al. 2016, MNRAS, 463, 382CrossRefGoogle Scholar
Weinberger, R., Springel, V., Herquist, L., et al. 2017, MNRAS, 465, 329110.1093/mnras/stw2944CrossRefGoogle Scholar
Winter, L. M., Mushotzky, R. F., Reynolds, C. S., Tueller, J., et al. 2009, ApJ, 690, 132210.1088/0004-637X/690/2/1322CrossRefGoogle Scholar
Xie, F. & Yuan, F. 2012, MNRAS, 427, 1580CrossRefGoogle Scholar
Xie, F., Yuan, F., & Ho, L. C., et al. 2017, ApJ, 844, 42Google Scholar
Yang, Q. X., Xie, F. G., Yuan, F., et al. 2015, MNRAS, 447, 169210.1093/mnras/stu2571CrossRefGoogle Scholar
Yoon, D., Yuan, F., Gan, Z., et al. 2018, ApJ, 864, 6CrossRefGoogle Scholar
Yoon, D., Yuan, F., Ostriker, J. P., et al. 2019, ApJ, 885, 16CrossRefGoogle Scholar
Younes, G., Ptak, A., Ho, L. C., et al. 2019, ApJ, 870, 73CrossRefGoogle Scholar
Yuan, F. & Narayan, R. 2014, ARA&A, 52, 529CrossRefGoogle Scholar
Yuan, F., Yoon, D., Li, Y., et al. 2018, ApJ, 857, 121CrossRefGoogle Scholar
Zoghbi, A., Matt, G., Miller, J. M., et al. 2017, ApJ, 836, 2CrossRefGoogle Scholar