Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-bxbhv Total loading time: 0.333 Render date: 2023-02-04T16:52:30.880Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Radiative Transfer in Molecular Clouds

Published online by Cambridge University Press:  27 April 2011

M. Juvela*
Affiliation:
Department of Physics, FI-00014 University of Helsinki, Finland
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Information of astronomical objects is obtained mainly through their radiation. Thus, the radiative transfer problem has a central role in all astrophysical research. Basic radiative transfer analysis or more complex modeling is needed both to interpret observations and to make predictions on the basis of numerical models. In this paper I will discuss radiative transfer in the context of interstellar molecular clouds where the main scientific questions involve the structure and evolution of the clouds and the star formation process. The studies rely on the analysis of spectral line and dust continuum observations. After a discussion of the corresponding radiative transfer methods, I will examine some of the current challenges in the field. Finally, I will present three studies where radiative transfer modeling pays a central role: the polarized dust emission, the Zeeman effect in emission lines, and the continuum emission from dense cloud cores.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bernard, J. P., Abergel, A., Ristorcelli, I., et al. 1999, A&A 347, 640Google Scholar
Bethell, T. J., Chepurnov, A., Lazarian, A., & Kim, J. 2007, ApJ 663, 1055CrossRefGoogle Scholar
Cho, J. & Lazarian, A. 2005, ApJ 631, 361CrossRefGoogle Scholar
Collins, D. C., Xu, H., Norman, M., Hui, L., Shengtai, L. 2010, ApJS 186, 308CrossRefGoogle Scholar
Compiègne, M., Verstraete, L., Jones, A. et al. 2010, A&A, submittedGoogle Scholar
Draine, B. T. & Weingartner, J. 1997, ApJ 480, 633CrossRefGoogle Scholar
Dullemond, C. P., Turolla, R. 2000, A&A 360, 1187Google Scholar
Falgarone, E., Pineau Des Forěts, G., Hily-Blant, P., Schilke, P. 2006, A&A 452, 511Google Scholar
Glover, S. C. O., Federrath, C., Mac Low, M.-M., Klessen, R. S. 2010, MNRAS 404, 2Google Scholar
Hoang, T. & Lazarian, A. 2009, ApJ 697, 1316CrossRefGoogle Scholar
Hogerheijde, M. R. & van der Tak, F. F. S. 2000, A&A, 362, 697Google Scholar
Jonsson, P. 2006, MNRAS 372, 2CrossRefGoogle Scholar
Juvela, M. 1997, A&A 322, 943Google Scholar
Juvela, M. 2005, A&A 440, 531Google Scholar
Juvela, M. & Padoan, P. 2003, A&A 397, 201Google Scholar
Juvela, M. & Padoan, P. 2005, ApJ 618, 744CrossRefGoogle Scholar
Juvela, M. & Padoan, P. 1999, in Science with the Atacama Large Millimeter Array, ASP Conference Series, Vol. Wootten, A., ed., 28Google Scholar
Lehtinen, K., Juvela, M., Mattila, K., Lemke, D., & Russeil, D. 2007, A&A 466, 969Google Scholar
Lucy, L. B. 1999, A&A, 344, 282Google Scholar
Lunttila, T., Padoan, P., Juvela, M., & Nordlund, Å 2009, ApJ 702, L37CrossRefGoogle Scholar
Lunttila, T. & Juvela, M. 2010, in preparationGoogle Scholar
Malinen, J., Juvela, M., Collins, D., Lunttila, T., & Padoan, P. 2010, submitted, arXiv:1009.4580Google Scholar
Meny, C., Gromov, V., Boudet, N., et al. 2007, A&A 468, 171Google Scholar
Niccolini, G. & Alcolea, J., 2006 A&A 456, 1Google Scholar
Olson, G. L., Auer, L. H., & Buchler, J. R. 1986, J. Quant. Spectrosc. Radiat. Transfer 35, 431CrossRefGoogle Scholar
Ossenkopf, V. & Henning, T. 1994, A&A 291, 943Google Scholar
Pascucci, I., Wolf, S., Steinacker, J. et al. 2004, A&A 417, 793Google Scholar
Pelkonen, V.-M., Juvela, M., & Padoan, P. 2009, A&A 502, 833Google Scholar
Ritzerveld, J. & Icke, V. 2006, Phys.Rev. E74, 026704Google Scholar
Scharmer, G. B. 1981, ApJ 249, 720CrossRefGoogle Scholar
Semionov, D. & Vansevičius, V. 2005, Balt. A 14, 543Google Scholar
Steinacker, J., Henning, Th., Bacmann, A., & Semenov, D. 2003, A&A 401, 405Google Scholar
Troland, T. H. & Crutcher, R.M. 2008, ApJ 680, 457CrossRefGoogle Scholar
Walmsley, C. M., Flower, D. R. & Pineau des Forêts, G. 2004, A&A 418, 1035Google Scholar
Watson, A. M. & Henney, W. J. 2001, Rev. Mex. Astron. Astrofis. 37, 221Google Scholar
Whittet, D., Goldsmith, P., & Pineda, J. 2010, ApJ, submitted.Google Scholar
Wood, K., Kenyon, S. J., Whitney, B., & Turnbull, M. 1998, ApJ, 497, 404CrossRefGoogle Scholar
Yusef-Zadeh, F., Morris, M., & White, R. L. 1984, ApJ 278, 186CrossRefGoogle Scholar
You have Access

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Radiative Transfer in Molecular Clouds
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Radiative Transfer in Molecular Clouds
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Radiative Transfer in Molecular Clouds
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *