Skip to main content
×
Home
    • Aa
    • Aa
  • Access

Radio remote sensing of the corona and the solar wind

  • Steven R. Spangler (a1) and Catherine A. Whiting (a1)
  • DOI: http://dx.doi.org/10.1017/S1743921309029834
  • Published online: 01 September 2008
Abstract
Abstract

Modern radio telescopes are extremely sensitive to plasma on the line of sight from a radio source to the antenna. Plasmas in the corona and solar wind produce measurable changes in the radio wave amplitude and phase, and the phase difference between wave fields of opposite circular polarization. Such measurements can be made of radio waves from spacecraft transmitters and extragalactic radio sources, using radio telescopes and spacecraft tracking antennas. Data have been taken at frequencies from about 80 MHz to 8000 MHz. Lower frequencies probe plasma at greater heliocentric distances. Analysis of these data yields information on the plasma density, density fluctuations, and plasma flow speeds in the corona and solar wind, and on the magnetic field in the solar corona. This paper will concentrate on the information that can be obtained from measurements of Faraday rotation through the corona and inner solar wind. The magnitude of Faraday rotation is proportional to the line of sight integral of the plasma density and the line-of-sight component of the magnetic field. Faraday rotation provides an almost unique means of estimating the magnetic field in this part of space. This technique has contributed to measurement of the large scale coronal magnetic field, the properties of electromagnetic turbulence in the corona, possible detection of electrical currents in the corona, and probing of the internal structure of coronal mass ejections (CMEs). This paper concentrates on the search for small-scale coronal turbulence and remote sensing of the structure of CMEs. Future investigations with the Expanded Very Large Array (EVLA) or Murchison Widefield Array (MWA) could provide unique observational input on the astrophysics of CMEs.

    • Send article to Kindle

      To send this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Radio remote sensing of the corona and the solar wind
      Your Kindle email address
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Radio remote sensing of the corona and the solar wind
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Radio remote sensing of the corona and the solar wind
      Available formats
      ×
Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

B. Bavassano , M. Dobrowolny , F. Mariani , & N. F. Ness 1982, J. Geophys. Res., 87, 3616

M. K. Bird , H. Volland , R. A. Howard , M. J. Koomen , D. J. Michels , N. R. Sheeley , J. W. Armstrong , B. L. Seidel , C. T. Stelzried , & R. Woo 1985, Solar Phys., 98, 341

M. K. Bird & P. Edenhofer 1990, in Physics of the Inner Heliosphere II, R. Schwenn and E. Marsch , ed., (Springer-Verlag:Berlin), p 13

B. V. Gudiksen & Å. Nordlund 2005, ApJ, 618, 1020,; Erratum: ApJ, 623, 600

J. V. Hollweg , M. K. Bird , H. Volland , P. Edenhofer , C. T. Stelzried , & B. L. Seidel 1982, J. Geophys. Res., 87, 1

L. D. Ingleby , S. R. Spangler , & C. A. Whiting 2007, ApJ, 668, 520

P. P. Kronberg , & R. G. Conway 1970, MNRAS, 147, 149

Y. Liu , W. B. Manchester IV, J. C. Kasper , J. D. Richardson , & J. W. Belcher 2007, ApJ, 665, 1439

S. Mancuso and S. R. Spangler 2000, ApJ, 525, 195

S. Mancuso and S. R. Spangler 2000, ApJ, 539, 480

S. Mancuso & M. V. Garzelli 2006, A & A, 466, 5

M. Pätzold , M. K. Bird , H. Volland , G. S. Levy , B. L. Seidel , & C. T. Stelzried 1987, Solar Phys., 109, 91

T. Sakurai and S. R. Spangler 1994, ApJ, 434, 773

S. R. Spangler , J. A. Leckband , & I. H. Cairns 2000 Phys. Plasm., 4, 846

S. R. Spangler & S. Mancuso 2000 ApJ, 530, 491

S. R. Spangler , D. W. Kavars , P. S. Kortenkamp , M. Bondi , F. Mantovani , & W. Alef 2002, A & A, 384, 654

S. R. Spangler 2005, Space Sci. Revs, 121, 189

S. R. Spangler 2007, ApJ, 670, 841

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the International Astronomical Union
  • ISSN: 1743-9213
  • EISSN: 1743-9221
  • URL: /core/journals/proceedings-of-the-international-astronomical-union
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: