Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T14:07:25.676Z Has data issue: false hasContentIssue false

Recovering the origin of star formation in the central region of I Zw 81

Published online by Cambridge University Press:  09 June 2023

Divya Pandey
Affiliation:
Department of Physics and Astronomy, National Institute of Technology, Rourkela, Odisha 769008, India
Kanak Saha
Affiliation:
Inter-University Centre for Astronomy & Astrophysics, Postbag 4, Ganeshkhind, Pune 411007, India
Ananta C. Pradhan
Affiliation:
Department of Physics and Astronomy, National Institute of Technology, Rourkela, Odisha 769008, India

Abstract

We have studied the star formation properties of a massive void galaxy - I Zw 81. We performed 2D structural decomposition on Canada France Hawaii Telescope (CFHT) g- and r-band observation of I Zw 81 using GALFIT. The galaxy consists of an unresolved small bulge, a bar, an inner ring, and a truncated disk. We have used far-ultraviolet (FUV) and near-UV (NUV) observation of Ultraviolet Imaging Telescope (UVIT) onboard AstroSat for our analysis. The NUV–r color map of the lenticular galaxy illustrates a shallow positive color gradient in the profile, implying that the bar and inner ring are more star-forming than the outer disk. The FUV emission is mainly concentrated in the central region of the galaxy. A tidal tail-like feature is detected in the CFHT observations. We infer that bar and minor mergers-like interactions enhance the gas inflow and drive star formation in the center of I Zw 81.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, S., Mesa, V., Padilla, N., et al. 2012, AAP, 539, A46 10.1051/0004-6361/201117901CrossRefGoogle Scholar
Alpaslan, M., Driver, S., Robotham, A. S. G., et al. 2015, MNRAS, 451, 3249 10.1093/mnras/stv1176CrossRefGoogle Scholar
Baldry, I. K., Glazebrook, K., Brinkmann, J., et al. 2004, ApJ, 600, 681 10.1086/380092CrossRefGoogle Scholar
Bournaud, F., Jog, C. J., & Combes, F. 2007, AAP, 476, 1179 10.1051/0004-6361:20078010CrossRefGoogle Scholar
Diaz-Garcia, S., Moyano, F. D., Comerón, S., et al. 2020, 896, A&A, 644, A38 10.1051/0004-6361/202039162CrossRefGoogle Scholar
Kannappan, S. J., Guie, J. M., & Baker, A. J. 2009, AJ, 138, 579 10.1088/0004-6256/138/2/579CrossRefGoogle Scholar
Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003, MNRAS, 341, 33 10.1046/j.1365-8711.2003.06291.xCrossRefGoogle Scholar
Kaviraj, S. 2014, MNRAS, 440, 2944 10.1093/mnras/stu338CrossRefGoogle Scholar
Kennicutt, R. C. 1998, AARA, 36, 189 10.1146/annurev.astro.36.1.189CrossRefGoogle Scholar
Khoperskov, S., Haywood, M., Di Matteo, P., Lehnert,932 M. D., & Combes, F. 2018, A&A, 609, A6010.1051/0004-6361/201731211CrossRefGoogle Scholar
Kirshner, R. P., Oemler, A., Schechter, P. L., et al. 1987, ApJ, 314, 49310.1086/165080CrossRefGoogle Scholar
Pan, Z., Li, J., Lin, W., et al. 2015, ApJL, 804, L42 10.1088/2041-8205/804/2/L42CrossRefGoogle Scholar
Pandey, D., Saha, K., & Pradhan, A. C. 2021, APJ, 919, 101 10.3847/1538-4357/ac1078CrossRefGoogle Scholar
Pandey, D., Saha, K., Pradhan, A. C., & Kaviraj, S. 2022, APJ, 941, 128 10.3847/1538-4357/aca1c5CrossRefGoogle Scholar
Peimbert, M. & Torres-Peimbert, S. 1992, AAP, 253, 349 Google Scholar
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.W. 2002, 973, AJ, 124, 266 10.1086/340952CrossRefGoogle Scholar
Peng, Y.-. jie., Lilly, S. J., Kovač, K., et al. 2010, ApJ, 721, 193Google Scholar
Penny, S. J., Brown, M. J. I., Pimbblet, K. A., et al. 2015, MNRAS, 453, 3519 Google Scholar
Saha, K., Dhiwar, S., Barway, S., et al. 2021, JApA, 42, 59 Google Scholar