Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-24T05:22:43.594Z Has data issue: false hasContentIssue false

Searching for chemical relics of first stars with LAMOST and Subaru

Published online by Cambridge University Press:  09 May 2016

Haining Li*
Affiliation:
Key Lab of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
Wako Aoki
Affiliation:
National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588, Japan School of Physical Sciences, The Graduate University of Advanced Studies (SOKENDAI), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
Gang Zhao
Affiliation:
Key Lab of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China
Satoshi Honda
Affiliation:
University of Hyogo, 407-2, Nishigaichi, Sayo-cho, Sayo, Hyogo, 679-5313, Japan
Norbert Christlieb
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, D-69117 Heidelberg, Germany
Takuma Suda
Affiliation:
Research Center for the Early Universe, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report progresses of a joint project on searching for extremely metal-poor (EMP) stars based on LAMOST survey and Subaru follow-up observation. Follow-up high-resolution snapshot spectra have been obtained for 70 objects, resulting in 42 EMP stars. A number of chemically interesting objects have already been identified, including (1) Two UMP (ultra metal-poor) stars with [Fe/H] ~ −4.0. One of them is the second UMP turnoff star with Li detection. (2) A super Li-rich (A(Li) ~ 3.1) EMP giant. This is the most metal-poor and extreme example of Li enhancement in giants known to date, and will shed light on Li production during the evolution of red giants. (3) A few EMP stars showing extreme overabundance in heavy elements. Detailed abundances of these extreme objects and statistics obtained by the large sample of EMP stars will provide important constraints on the Galactic halo formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Aoki, W., Beers, T. C., & Lee, Y. S., et al. 2013, AJ, 145, 13Google Scholar
Asplund, Martin, Lambert, David L. & Nissen, Poul Erik, et al. 2006, ApJ, 664, 229Google Scholar
Beers, T. C. & Christlieb, N. 2005, ARA&A, 43, 531Google Scholar
Boesgaard, A. M. & Steigman, G. 1985, ARA&A, 23, 319Google Scholar
Bromm, V. & Yoshida, N. 2011, ARA&A, 49, 373Google Scholar
Burris, D. L., Pilachowski, C. A., & Armandroff, T. E., et al. 2000, ApJ, 544, 302Google Scholar
Carlin, J. L., Lpine, S., & Newberg, H. J., et al. 2012, RAA, 12, 775Google Scholar
Carollo, D., Freeman, K., & Beers, T. C., et al. 2014, ApJ, 788, 180Google Scholar
Cayrel, R., Depagne, E., Spite, M., et al. 2004, A&A, 416, 1117Google Scholar
Cescutti, G., Chiappini, C., & Hirschi, , et al. 2013, A&A, 553, A51Google Scholar
Charbonnel, C. & Balachandran, S. C. 2000, A&A, 359, 563Google Scholar
Christlieb, N., Schrck, T., Frebel, A., et al. 2008, A&A, 484, 721Google Scholar
Cui, X.-Q., Zhao, Y.-H., & Chu, Y.-Q., et al. 2012, RAA, 12, 1197Google Scholar
Frebel, A. & Norris, J. E. 2015, ARA&A, in press, arXiv:1501.06921Google Scholar
Goriely, S., Sida, J.-L., & Lematre, J.-F., et al. 2013, Physical Review Letters, 111, 242502Google Scholar
Hansen, T., et al. 2014, ApJ, 787, 162Google Scholar
Li, H. N., Zhao, G., Christlieb, N., et al. 2015a, ApJ, 798, 110Google Scholar
Li, H. N., Aoki, W., Zhao, G., et al. 2015b, PASJ, in press, arXiv:1506.05684Google Scholar
Li, H. N., Aoki, W., Honda, S., et al. 2015c, RAA, 15, 1264Google Scholar
Masseron, T., Johnson, J. A., Plez, B., et al. 2010, A&A, 509, A93Google Scholar
Masseron, T., Johnson, J. A., Lucatello, S., et al. 2012, ApJ, 751, 14Google Scholar
Nollett, Kenneth M., Busso, M., & Wasserburg, G. J. 2003, ApJ, 582, 1036Google Scholar
Nomoto, K., Kobayashi, C., & Tominaga, N. 2013, ARA&A, 51, 457Google Scholar
Norris, et al. 2013a, ApJ, 762, 28Google Scholar
Norris, et al. 2013b, ApJ, 762, 25Google Scholar
Roederer, I. U., Cowan, J. J., & Preston, G. W., et al. 2014, MNRAS, 445, 2970Google Scholar
Sackmann, I.-Juliana & Boothroyd, Arnold I. 1999, ApJ, 510, 217Google Scholar
Sbordone, L., Bonifacio, P., Caffau, E., et al. 2010, A&A, 522, 26Google Scholar
Sneden, C., Preston, G. W., McWilliam, A., & Searle, L. 1994, ApJ, 431, L27Google Scholar
Sneden, C., McWilliam, A., & Preston, G. W., et al. 1996, ApJ, 467, 819Google Scholar
Spite, M., Caffau, E., Bonifacio, P., et al. 2013, A&A, 552, A107Google Scholar
Suda, T., Aikawa, M., & Machida, M. N., et al. 2004, ApJ, 611, 476Google Scholar
Suda, T. & Fujimoto, M. Y. 2010, MNRAS, 405, 177Google Scholar
Umeda, H. & Nomoto, K. 2005, ApJ, 619, 427Google Scholar
Woosley, S. E., Wilson, J. R., & Mathews, G. J., et al. 1994, ApJ, 433, 229Google Scholar
Yanny, B., Rockosi, C., & Newberg, H. J., et al. 2009, ApJ, 137, 4377Google Scholar
Yong, D., et al. 2013, ApJ, 762, 27Google Scholar
Zhao, G., Zhao, Y. H., & Chu, Y. Q., et al. 2012, RAA, 12, 723Google Scholar