Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T07:32:58.585Z Has data issue: false hasContentIssue false

The shape of M dwarf flares in Kepler light curves

Published online by Cambridge University Press:  09 September 2016

James R. A. Davenport*
Affiliation:
NSF Astronomy and Astrophysics Postdoctoral Fellow, Department of Physics & Astronomy, Western Washington University, Bellingham, WA 98225 email: James.Davenport@wwu.edu Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ultra-precise light curves from Kepler provide the best opportunity to determine rates and statistical properties of stellar flares. From 11 months of data on the active M4 dwarf, GJ 1243, we have built the largest catalog of flares for a single star: over 6100 events. Combining 885 of our most pristine flares, we generated an empirical white-light flare template. This high-fidelity template shows a rapid initial rise, and two distinct exponential cooling phases. This template is useful in constraining flare energies and for improved flare detection in many surveys. Complex, multi-peaked events are more common for higher energy flares in this sample. Using our flare template we characterize the structure of complex events. In this contributed talk, I presented results from our boutique study of GJ 1243, and described an expanded investigation of the structure of complex flares and their connection to solar events.

Keywords

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Balona, L. A. 2015, MNRAS, 447, 2714 CrossRefGoogle Scholar
Borucki, W. J., et al. 2010, Science, 327, 977 CrossRefGoogle Scholar
Chang, S.-W., Byun, Y.-I., & Hartman, J. D. 2015, ArXiv e-prints # 1510.01005Google Scholar
Davenport, J. R. A., et al. 2014, ApJ, 797, 122 CrossRefGoogle Scholar
Davenport, J. R. A., Hebb, L., & Hawley, S. L. 2015, ApJ, 806, 212 CrossRefGoogle Scholar
Donati, J.-F., et al. 2008, MNRAS, 390, 545 CrossRefGoogle Scholar
Hawley, S. L., Davenport, J. R. A., Kowalski, A. F., Wisniewski, J. P., Hebb, L., Deitrick, R., & Hilton, E. J. 2014, ApJ, 797, 121 CrossRefGoogle Scholar
Hudson, H. S., Acton, L. W., Hirayama, T., & Uchida, Y. 1992, PASJ, 44, L77 Google Scholar
Inglis, A. R., Ireland, J., & Dominique, M. 2015, ApJ, 798, 108 CrossRefGoogle Scholar
Kowalski, A. F., Hawley, S. L., Holtzman, J. A., Wisniewski, J. P., & Hilton, E. J. 2010, ApJ, 714, L98 CrossRefGoogle Scholar
Lurie, J. C., Davenport, J. R. A., Hawley, S. L., Wilkinson, T. D., Wisniewski, J. P., Kowalski, A. F., & Hebb, L. 2015, ApJ, 800, 95 CrossRefGoogle Scholar
Morin, J., et al. 2008, MNRAS, 390, 567 CrossRefGoogle Scholar
Schrijver, C. J. & Higgins, P. A. 2015, ArXiv e-prints # 1509.05680Google Scholar
Shibayama, T., et al. 2013, ApJS, 209, 5 CrossRefGoogle Scholar
Walkowicz, L. M., et al. 2011, AJ, 141, 50 CrossRefGoogle Scholar