Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T05:32:36.927Z Has data issue: false hasContentIssue false

Simulations of Colliding Winds in Massive Binary Systems with Accretion

Published online by Cambridge University Press:  30 November 2022

Amit Kashi
Affiliation:
Department of Physics, Ariel University, Ariel, 4070000, Israel Astrophysics Geophysics And Space Science Research Center (AGASS), Ariel University, Ariel, 4070000, Israel e-mails: kashi@ariel.ac.il; amirmi@ariel.ac.il
Amir Michaelis
Affiliation:
Department of Physics, Ariel University, Ariel, 4070000, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We run numerical simulations of massive colliding wind binaries, and quantify the accretion onto the secondary under different conditions. We set 3D simulation of a LBV–WR system and vary the LBV mass loss rate to obtain different values of wind momentum ratio η. We show that the mean accretion rate for stationary systems fits a power law Macc∝ η–1.6 for a wide range of η, until for extremely small η saturation in the accretion is reached. We find that the stronger the primary wind, the smaller the opening angle of the colliding wind structure (CWS), and compare it with previous analytical estimates. We demonstrate the efficiency of clumpy wind in penetrating the CWS and inducing smaller scale clumps that can be accreted. We propose that simulations of colliding winds can reveal more relations as the ones we found, and can be used to constrain stellar parameters.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Akashi, M. S., Kashi, A., & Soker, N. 2013, NewA, 18, 23, doi: 10.1016/j.newast.2012.05.010 CrossRefGoogle Scholar
Clementel, N., Madura, T. I., Kruip, C. J. H., & Paardekooper, J. P. 2015, MNRAS, 450, 1388, doi: 10.1093/mnras/stv696 CrossRefGoogle Scholar
Crowther, P. A., Dessart, L., Hillier, D. J., Abbott, J. B., & Fullerton, A. W. 2002, A&A, 392, 653, doi: 10.1051/0004-6361:20020941 Google Scholar
Davidson, K., & Humphreys, R. M. 2012, 384, doi: 10.1007/978-1-4614-2275-4 CrossRefGoogle Scholar
Davidson, K., Ishibashi, K., & Martin, J. C. 2017, Research Notes of the American Astronomical Society, 1, 6, doi: 10.3847/2515-5172/aa96b3 Google Scholar
Eichler, D., & Usov, V. 1993, ApJ, 402, 271, doi: 10.1086/172130 CrossRefGoogle Scholar
Gayley, K. G. 2009, ApJ, 703, 89, doi: 10.1088/0004-637X/703/1/89 CrossRefGoogle Scholar
Gayley, K. G., Owocki, S. P., & Cranmer, S. R. 1997, ApJ, 475, 786, doi: 10.1086/303573 CrossRefGoogle Scholar
Girard, T., & Willson, L. A. 1987, A&A, 183, 247 Google Scholar
Gootkin, K., Dorn-Wallenstein, T., Lomax, J. R., et al. 2020, ApJ, 900, 162, doi: 10.3847/1538-4357/abad32 CrossRefGoogle Scholar
Hainich, R., Rühling, U., Todt, H., et al. 2014, A&A, 565, A27, doi: 10.1051/0004-6361/201322696 Google Scholar
Hamann, W. R., & Koesterke, L. 1998, A&A, 335, 1003 Google Scholar
Hendrix, T., Keppens, R., van Marle, A. J., et al. 2016, MNRAS, 460, 3975, doi: 10.1093/mnras/stw1289 CrossRefGoogle Scholar
Kashi, A. 2010, MNRAS, 405, 1924, doi: 10.1111/j.1365-2966.2010.16582.x Google Scholar
Kashi, A. 2017, MNRAS, 464, 775, doi: 10.1093/mnras/stw2303 CrossRefGoogle Scholar
Kashi, A. 2019, MNRAS, 486, 926, doi: 10.1093/mnras/stz837 CrossRefGoogle Scholar
Kashi, A. 2020, MNRAS, 492, 5261, doi: 10.1093/mnras/staa203 CrossRefGoogle Scholar
Kashi, A., Davidson, K., & Humphreys, R. M. 2016, ApJ, 817, 66, doi: 10.3847/0004-637X/817/1/66 CrossRefGoogle Scholar
Kashi, A., & Michaelis, A. 2021, Galaxies, 10, 4, doi: 10.3390/galaxies10010004 CrossRefGoogle Scholar
Kashi, A., & Soker, N. 2007, MNRAS, 378, 1609, doi: 10.1111/j.1365-2966.2007.11908.x CrossRefGoogle Scholar
Kashi, A., & Soker, N. 2008, NewA, 13, 569, doi: 10.1016/j.newast.2008.03.003 CrossRefGoogle Scholar
Kashi, A., & Soker, N. 2009a, NewA, 14, 11, doi: 10.1016/j.newast.2008.04.003 CrossRefGoogle Scholar
Kashi, A., & Soker, N. 2009b, MNRAS, 394, 923, doi: 10.1111/j.1365-2966.2008.14331.x CrossRefGoogle Scholar
Kashi, A., & Soker, N. 2009c, NewA, 14, 11, doi: 10.1016/j.newast.2008.04.003 CrossRefGoogle Scholar
Lamberts, A., Fromang, S., & Dubus, G. 2011, MNRAS, 418, 2618, doi: 10.1111/j.1365-2966.2011.19653.x CrossRefGoogle Scholar
Langer, N. 2012, ARA&A, 50, 107, doi: 10.1146/annurev-astro-081811-125534 Google Scholar
Michaelis, A. M., Kashi, A., & Kochiashvili, N. 2018, NewA, 65, 29, doi: 10.1016/j.newast.2018.06.001 CrossRefGoogle Scholar
Moffat, A. F. J. 2008, in Clumping in Hot-Star Winds, ed. Hamann, W.-R., Feldmeier, A., & Oskinova, L. M., 17Google Scholar
Moffat, A. F. J., & Robert, C. 1994, ApJ, 421, 310, doi: 10.1086/173648 CrossRefGoogle Scholar
Moffatt, H. K. 1969, Journal of Fluid Mechanics, 35, 117, doi: 10.1017/S0022112069000991 CrossRefGoogle Scholar
Nugis, T., & Lamers, H. J. G. L. M. 2000, A&A, 360, 227 Google Scholar
Owocki, S. P. 2015, in Astrophysics and Space Science Library, Vol. 412, Very Massive Stars in the Local Universe, ed. Vink, J. S., 113CrossRefGoogle Scholar
Owocki, S. P., & Gayley, K. G. 1995, ApJL, 454, L145, doi: 10.1086/309786 CrossRefGoogle Scholar
Parkin, E. R., & Gosset, E. 2011, A&A, 530, A119, doi: 10.1051/0004-6361/201016125 Google Scholar
Parkin, E. R., Pittard, J. M., Corcoran, M. F., & Hamaguchi, K. 2011, ApJ, 726, 105, doi: 10.1088/0004-637X/726/2/105 CrossRefGoogle Scholar
Pittard, J. M., & Dawson, B. 2018, MNRAS, 477, 5640, doi: 10.1093/mnras/sty1025 CrossRefGoogle Scholar
Puls, J., Vink, J. S., & Najarro, F. 2008, AAPR, 16, 209, doi: 10.1007/s00159-008-0015-8 Google Scholar
Reitberger, K., Kissmann, R., Reimer, A., & Reimer, O. 2017, ApJ, 847, 40, doi: 10.3847/1538-4357/aa876d CrossRefGoogle Scholar
Shenar, T., Sablowski, D. P., Hainich, R., et al. 2019, A&A, 627, A151, doi: 10.1051/0004-6361/201935684 Google Scholar
Smith, N. 2014, ARA&A, 52, 487, doi: 10.1146/annurev-astro-081913-040025 Google Scholar
Soker, N. 2005, ApJ, 635, 540, doi: 10.1086/497389 CrossRefGoogle Scholar
Stevens, I. R., Blondin, J. M., & Pollock, A. M. T. 1992, ApJ, 386, 265, doi: 10.1086/171013 CrossRefGoogle Scholar
Sundqvist, J. O., & Owocki, S. P. 2013, MNRAS, 428, 1837, doi: 10.1093/mnras/sts165 CrossRefGoogle Scholar
Usov, V. V. 1992, ApJ, 389, 635, doi: 10.1086/171236 CrossRefGoogle Scholar
Vink, J. S. 2015, in Astrophysics and Space Science Library, Vol. 412, Very Massive Stars in the Local Universe, ed. Vink, J. S., 77CrossRefGoogle Scholar
Walder, R., & Folini, D. 2002, in Astronomical Society of the Pacific Conference Series, Vol. 260, Interacting Winds from Massive Stars, ed. Moffat, A. F. J. & St-Louis, N., 595Google Scholar
Zhekov, S. A. 2021, MNRAS, 500, 4837, doi: 10.1093/mnras/staa3591 CrossRefGoogle Scholar