Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T02:00:45.368Z Has data issue: false hasContentIssue false

Simulations of dark matter with frequent self-interactions

Published online by Cambridge University Press:  20 January 2023

Moritz S. Fischer*
Affiliation:
Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany

Abstract

Self-interacting dark matter (SIDM) is promising to solve or at least mitigate small-scale problems of cold collisionless dark matter. N-body simulations have proven to be a powerful tool to study SIDM within the astrophysical context. However, it turned out to be difficult to simulate dark matter (DM) models that typically scatter about a small angle, for example, light mediator models. We developed a novel numerical scheme for this regime of frequent self-interactions that allows for N-body simulations of systems like galaxy cluster mergers or even cosmological simulations. We have studied equal and unequal mass mergers of galaxies and galaxy clusters and found significant differences between the phenomenology of frequent self-interactions and the commonly studied large-angle scattering (rare self-interactions). For example, frequent self-interactions tend to produce larger offsets between galaxies and DM than rare self-interactions.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bullock, J. S. & Boylan-Kolchin, M. 2017, Small-Scale Challenges to the ΛCDM Paradigm. ARAA, 55(1), 343387.CrossRefGoogle Scholar
Burkert, A. 2000, The Structure and Evolution of Weakly Self-interacting Cold Dark Matter Halos. APJL, 534(2), L143L146.Google ScholarPubMed
Dodelson, S. & Widrow, L. M. 1994, Sterile neutrinos as dark matter. PRL, 72(1), 1720.Google ScholarPubMed
Fischer, M. S., Brüggen, M., Schmidt-Hoberg, K., Dolag, K., Kahlhoefer, F., Ragagnin, A., & Robertson, A. 2021,a N-body simulations of dark matter with frequent self-interactions*. Monthly Notices of the Royal Astronomical Society, stab1198.Google Scholar
Fischer, M. S., Brüggen, M., Schmidt-Hoberg, K., Dolag, K., Ragagnin, A., & Robertson, A. 2021,b Unequal-mass mergers of dark matter haloes with rare and frequent self-interactions. Monthly Notices of the Royal Astronomical Society, 510b(3), 40804099.Google Scholar
Harvey, D., Massey, R., Kitching, T., Taylor, A., & Tittley, E. 2015, The nongravitational interactions of dark matter in colliding galaxy clusters. Science, 347(6229), 14621465.Google ScholarPubMed
Hu, W., Barkana, R., & Gruzinov, A. 2000, Fuzzy Cold Dark Matter: The Wave Properties of Ultralight Particles. PRL, 85(6), 11581161.CrossRefGoogle ScholarPubMed
Kahlhoefer, F., Schmidt-Hoberg, K., Frandsen, M. T., & Sarkar, S. 2014, Colliding clusters and dark matter self-interactions. MNRAS, 437(3), 28652881.CrossRefGoogle Scholar
Kim, S. Y., Peter, A. H. G., & Wittman, D. 2017, In the wake of dark giants: new signatures of dark matter self-interactions in equal-mass mergers of galaxy clusters. MNRAS, 469(2), 14141444.Google Scholar
Kummer, J., Brüggen, M., Dolag, K., Kahlhoefer, F., & Schmidt-Hoberg, K. 2019, Simulations of core formation for frequent dark matter self-interactions. MNRAS, 487(1), 354363.CrossRefGoogle Scholar
Moliere, G. 1948, Theorie der streuung schneller geladener teilchen ii mehrfach-und vielfachstreuung. Zeitschrift für Naturforschung A, 3(2), 7897.CrossRefGoogle Scholar
Oman, K. A., Marasco, A., Navarro, J. F., Frenk, C. S., Schaye, J., & Bentez-Llambay, A. r. 2019, Non-circular motions and the diversity of dwarf galaxy rotation curves. MNRAS, 482(1), 821847.CrossRefGoogle Scholar
Randall, S. W., Markevitch, M., Clowe, D., Gonzalez, A. H., & Bradač, M. 2008, Constraints on the Self-Interaction Cross Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56. ApJ, 679(2), 11731180.Google Scholar
Robertson, A., Massey, R., & Eke, V. 2017,a Cosmic particle colliders: simulations of self-interacting dark matter with anisotropic scattering. MNRAS, 467a(4), 47194730.CrossRefGoogle Scholar
Robertson, A., Massey, R., & Eke, V. 2017,b What does the Bullet Cluster tell us about self-interacting dark matter? MNRAS, 465b(1), 569587.Google Scholar
Rocha, M., Peter, A. H. G., Bullock, J. S., Kaplinghat, M., Garrison-Kimmel, S., Oñorbe, J., & Moustakas, L. A. 2013, Cosmological simulations with self-interacting dark matter – i. constant-density cores and substructure. Monthly Notices of the Royal Astronomical Society, 430(1), 81104.CrossRefGoogle Scholar
Spergel, D. N. & Steinhardt, P. J. 2000, Observational evidence for self-interacting cold dark matter. Physical Review Letters, 84(17), 37603763.Google ScholarPubMed
Springel, V. 2005, The cosmological simulation code GADGET-2. MNRAS, 364(4), 11051134.Google Scholar
Springel, V., White, S. D. M., Jenkins, A., Frenk, C. S., Yoshida, N., Gao, L., Navarro, J., Thacker, R., Croton, D., Helly, J., & et al. 2005, Simulations of the formation, evolution and clustering of galaxies and quasars. Nature, 435(7042), 629636.Google ScholarPubMed
Tulin, S. & Yu, H.-B. 2018, Dark matter self-interactions and small scale structure. PHYSREP, 730, 157.Google Scholar
Wittman, D., Golovich, N., & Dawson, W. A. 2018, The Mismeasure of Mergers: Revised Limits on Self-interacting Dark Matter in Merging Galaxy Clusters. ApJ, 869(2), 104.CrossRefGoogle Scholar