Skip to main content
×
×
Home

Simulations of Recoiling Massive Black Holes

  • Javiera Guedes (a1), Piero Madau (a1), Lucio Mayer (a2), Michael Kuhlen (a3), Jürg Diemand (a2) and Marcel Zemp (a4)...
Abstract

The coalescence of black hole binaries is a significant source of gravitational wave radiation. The typically asymmetric nature of this emission, which carries linear momentum, can result in the recoil of the black hole remnant with velocities in the range 100 < Vrecoil < 3750 km s−1. The detectability of recoiling massive black holes (MBH) as off-nuclear QSOs is tightly connected with the properties of the host galaxy, which determine the MBH's orbit and fuel reservoir. We present the results of N-body simulations of recoiling MBHs in high-resolution, non-axisymmetric potentials. We find that if the recoil velocities are high enough to reach regions of the galaxy dominated by the generally triaxial dark matter distribution, the return time is significantly extended when compared to a spherical distribution. We also perform simulations of recoiling MBHs traveling in gas merger remnants, where large amounts of gas have been funneled to the central regions, In this case, the MBHs remain within R<1 kpc from the center of the host even for high recoil velocities (Vrecoil = 1200 km s−1) due to the compactness of the remnant galaxy's nuclear disk. We discuss the implications of both scenarios for detectability.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Simulations of Recoiling Massive Black Holes
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Simulations of Recoiling Massive Black Holes
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Simulations of Recoiling Massive Black Holes
      Available formats
      ×
Copyright
References
Hide All
Diemand, J., Kuhlen, M., & Madau, P. 2007, ApJ, 657, 262
Guedes, J., Diemand, J., Zemp, M., Kuhlen, M., Madau, P., & Mayer, L. 2008, AN, 329, 1004
Guedes, J., Madau, P., Kuhlen, M., Diemand, J., & Zemp, M. 2009, ApJ, 702, 890
Mayer, L., Kazantzidis, S., Madau, P., Colpi, M., Quinn, T., & Wadsley, J. 2007, Science, 316, 1874
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the International Astronomical Union
  • ISSN: 1743-9213
  • EISSN: 1743-9221
  • URL: /core/journals/proceedings-of-the-international-astronomical-union
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed