Hostname: page-component-6bb9c88b65-g7ldn Total loading time: 0 Render date: 2025-07-22T09:52:54.265Z Has data issue: false hasContentIssue false

Solar-like differential rotation and equatorward migration in a convective dynamo with a coronal envelope

Published online by Cambridge University Press:  18 July 2013

J. Warnecke
Affiliation:
NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden, email: joern@nordita.org Department of Astronomy, Stockholm University, SE-10691 Stockholm, Sweden
P. J. Käpylä
Affiliation:
NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden, email: joern@nordita.org Department of Physics, PO BOX 64, FI-00014Helsinki University, Finland
M. J. Mantere
Affiliation:
Department of Physics, PO BOX 64, FI-00014Helsinki University, Finland Department of Information and Computer Science, Aalto University, PO Box 15400, FI-00076 Aalto, Finland
A. Brandenburg
Affiliation:
NORDITA, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden, email: joern@nordita.org Department of Astronomy, Stockholm University, SE-10691 Stockholm, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present results of convective turbulent dynamo simulations including a coronal layer in a spherical wedge. We find an equatorward migration of the radial and azimuthal fields similar to the behavior of sunspots during the solar cycle. The migration of the field coexist with a spoke-like differential rotation and anti-solar (clockwise) meridional circulation. Even though the migration extends over the whole convection zone, the mechanism causing this is not yet fully understood.

References

Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J. 2010, ApJ, 711, 424 CrossRefGoogle Scholar
Brown, B. P., Miesch, M. S., Browning, M. K., Brun, A. S. & Toomre, J. 2011, ApJ, 731, 69 Google Scholar
Brun, A. S., Miesch, M. S., & Toomre, J. 2004, ApJ, 614, 1073 Google Scholar
Dikpati, M., & Charbonneau, P. 1999, ApJ, 518, 508 CrossRefGoogle Scholar
Ghizaru, M., Charbonneau, P., & Smolarkiewicz, P. K. 2010, ApJL, 715, L133 Google Scholar
Gilman, P. A. 1983, ApJS, 53, 243 Google Scholar
Käpylä, P. J., Korpi, M. J., & Tuominen, I. 2006, AN, 327, 884 Google Scholar
Käpylä, P. J., Korpi, M. J., Brandenburg, A., Mitra, D., & Tavakol, R. 2010, AN, 331, 73 Google Scholar
Käpylä, P. J., Mantere, M. J., Guerrero, G., Brandenburg, A., & Chatterjee, P. 2011, A&A, 531, A162 Google Scholar
Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 2011, Astron. Nachr., 332, 883 Google Scholar
Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 2012, ApJL, 755, L22 CrossRefGoogle Scholar
Käpylä, P. J., Mantere, M. J., Cole, E., Warnecke, J., & Brandenburg, A. 2013, ApJ submitted, arXiv:1301.2595Google Scholar
Kitchatinov, L. L. & Rüdiger, G. 1999, A&A, 344, 911 Google Scholar
Kitchatinov, L. L. & Olemskoy, S. V. 2012, Solar Phys., 276, 3 CrossRefGoogle Scholar
Miesch, M. S., Brun, A. S., & Toomre, J. 2006, ApJ, 641, 618 Google Scholar
Mitra, D., Tavakol, R., Brandenburg, A., & Moss, D. 2009, ApJ, 697, 923 Google Scholar
Warnecke, J., & Brandenburg, A. 2010, A&A, 523, A19 Google Scholar
Warnecke, J., Brandenburg, A., & Mitra, D. 2011, A&A, 534 A11 Google Scholar
Warnecke, J., Brandenburg, A., & Mitra, D. 2012a JSWSC, 2, A11 Google Scholar
Warnecke, J., Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 2012b Solar Phys., 280, 299 CrossRefGoogle Scholar
Warnecke, J., Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 2013, ApJ submitted, arXiv:1301.2248Google Scholar