Hostname: page-component-65f69f4695-5b78l Total loading time: 0 Render date: 2025-06-26T14:39:26.478Z Has data issue: false hasContentIssue false

Solenoidal versus compressive turbulence forcing

Published online by Cambridge University Press:  21 October 2010

C. Federrath
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany
J. Duval
Affiliation:
Astronomy Department at Boston University, 725 Commonwealth Avenue, Boston, MA 02215, USA
R. S. Klessen
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany
W. Schmidt
Affiliation:
Institut für Astrophysik Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
M.-M. Mac Low
Affiliation:
Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We analyze the statistics and star formation rate obtained in high-resolution numerical experiments of forced supersonic turbulence, and compare with observations. We concentrate on a systematic comparison of solenoidal (divergence-free) and compressive (curl-free) forcing (Federrath et al. 2009 a, b), which are two limiting cases of turbulence driving. Our results show that for the same RMS Mach number, compressive forcing produces a three times larger standard deviation of the density probability distribution. When self-gravity is included in the models, the star formation rate is more than one order of magnitude higher for compressive forcing than for solenoidal forcing.

Information

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Elmegreen, B. G. 2008, ApJ, 672, 1006CrossRefGoogle Scholar
Federrath, C., Duval, J., Klessen, R. S., Schmidt, W., & Mac Low, M.-M. 2009a, arXiv:0905.1060Google Scholar
Federrath, C., Klessen, R. S., & Schmidt, W. 2008, ApJ, 688, L79CrossRefGoogle Scholar
Federrath, C., Klessen, R. S., & Schmidt, W. 2009b, ApJ, 692, 364CrossRefGoogle Scholar
Goodman, A. A., Pineda, J. E., & Schnee, S. L. 2009, ApJ, 692, 91CrossRefGoogle Scholar
Hennebelle, P. & Chabrier, G. 2009, ApJ, 702, 1428CrossRefGoogle Scholar
Heyer, M. H., Williams, J. P., & Brunt, C. M. 2006, ApJ, 643, 956CrossRefGoogle Scholar
Hily-Blant, P., Falgarone, E., & Pety, J. 2008, A&A, 481, 367Google Scholar
Krumholz, M. R. & McKee, C. F. 2005, ApJ, 630, 250CrossRefGoogle Scholar
Padoan, P., & Nordlund, Å. 2002, ApJ, 576, 870CrossRefGoogle Scholar