Hostname: page-component-cb9f654ff-rkzlw Total loading time: 0 Render date: 2025-08-24T05:35:35.511Z Has data issue: false hasContentIssue false

Spectral identification and classification of dusty stellar sources using spectroscopic and multiwavelength observations through machine learning

Published online by Cambridge University Press:  01 August 2025

Sepideh Ghaziasgar*
Affiliation:
School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
Amirhossein Masoudnezhad
Affiliation:
Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
Atefeh Javadi
Affiliation:
School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
Jacco Th. van Loon
Affiliation:
Astrophysics Group, Lennard-Jones Laboratories, Keele University, ST5 5BG, UK
Habib G. Khosroshahi
Affiliation:
School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
Negin Khosravaninezhad
Affiliation:
Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran Department of Physics and Astronomy, University of California Riverside, CA 92521, USA

Abstract

We proposed a machine learning approach to identify and distinguish dusty stellar sources employing supervised methods and categorizing point sources, mainly evolved stars, using photometric and spectroscopic data collected over the IR sky. Spectroscopic data is typically used to identify specific infrared sources. However, our goal is to determine how well these sources can be identified using multiwavelength data. Consequently, we developed a robust training set of spectra of confirmed sources from the Large and Small Magellanic Clouds derived from SAGE-Spec Spitzer Legacy and SMC-Spec Spitzer Infrared Spectrograph (IRS) spectral catalogs. Subsequently, we applied various learning classifiers to distinguish stellar subcategories comprising young stellar objects (YSOs), C-rich asymptotic giant branch (CAGB), O-rich AGB stars (OAGB), Red supergiant (RSG), and post-AGB stars. We have classified around 700 counts of these sources. It should be highlighted that despite utilizing the limited spectroscopic data we trained, the accuracy and models’ learning curve provided outstanding results for some of the models. Therefore, the Support Vector Classifier (SVC) is the most accurate classifier for this limited dataset.

Information

Type
Contributed Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Boyer, M. L., McQuinn, K. B. W., Groenewegen, M. A. T., et al. 2017, ApJ, 185, 152 Google Scholar
Ivezić, Ž., Connolly, A., Vanderplas, J., et al. 2014, Princeton University PressGoogle Scholar
Javadi, A., van Loon, J.Th., Mirtorabi, M.T., et al. 2011a, MNRAS, 411, 263Google Scholar
Javadi, A., van Loon, J.Th., Mirtorabi, M.T., et al. 2011b, MNRAS, 414, 3394CrossRefGoogle Scholar
Javadi, A., van Loon, J.Th., Khosroshahi, H., Mirtorabi, M.T., et al. 2013, MNRAS, 432, 2824CrossRefGoogle Scholar
Javadi, A., van Loon, J.Th., 2022, Proceedings of IAU Symposium, 366, arXiv:2204.08944Google Scholar
Jones, O. C., Woods, P. M., Kemper, F., et al. 2017a, MNRAS, 470, 3250 Google Scholar
Jones, O. C., Meixner, P. M., Justtanont, k., et al. 2017b, ApJ, 841, 15Google Scholar
Krakowski, T., Mal ek, K., Bilicki, M., et al. 2016, A&A, 596, A39Google Scholar
Kovács, A., Szapudi, I., Bilicki, M., et al. 2015, MNRAS, 448, 1305 CrossRefGoogle Scholar
Meixner, O. C., Woods, P. M., Kemper, F., et al. 2006, AJ, 132, 2268 Google Scholar
Navabi, M., Saremi, E., Javadi, A., et al. 2021, ApJ, 910, 127 Google Scholar
Ruffle, M. E., Kemper, F., Jones, O. C., et al. 2015, MNRAS, 451, 3504 Google Scholar
Saremi, E., Javadi, A., van Loon, et al. 2020, ApJ, 894, 135CrossRefGoogle Scholar
Sturrock, G. C., Manry, B., Rafiqi, S., et al. 2019, SMU Data Science Review, 2, 1 Google Scholar
Suh, K.W., 2016, J. Astron. Space Sci., 33, 119 Google Scholar
Suh, K.W., 2020, ApJ, 891, 43 Google Scholar
Suh, K.W., 2021, ApJ, 256, 43 Google Scholar
Van Winckel, H., 2003, Annu. Rev. Astron. Astrophys., 41, 391 CrossRefGoogle Scholar
Woods, P. M., Oliveira, J. M., Kemper, F., et al. 2011, MNRAS, 411, 1597 CrossRefGoogle Scholar