Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-27T11:02:11.677Z Has data issue: false hasContentIssue false

Spectroscopy of complete populations of Wolf-Rayet binaries in the Magellanic Clouds

Published online by Cambridge University Press:  30 December 2019

Tomer Shenar
Affiliation:
Institute of Astrophysics, KU Leuven, Celestijnenlaan 200 D, 3001, Leuven, Belgium email: tomer.shenar@kuleuven.be
R. Hainich
Affiliation:
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany
W.-R. Hamann
Affiliation:
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany
A. F. J. Moffat
Affiliation:
Département de physique and Centre de Recherche en Astrophysique du Québec (CRAQ), Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada
H. Todt
Affiliation:
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany
A. Sander
Affiliation:
Armagh Observatory and Planetarium, College Hill, Armagh, BT61 9DG, UK
L. M. Oskinova
Affiliation:
Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany
H. Sana
Affiliation:
Institute of Astrophysics, KU Leuven, Celestijnenlaan 200 D, 3001, Leuven, Belgium email: tomer.shenar@kuleuven.be
O. Schnurr
Affiliation:
Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, 14482 Potsdam, Germany
N. St-Louis
Affiliation:
Département de physique and Centre de Recherche en Astrophysique du Québec (CRAQ), Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Classical Wolf-Rayet stars are evolved, hydrogen depleted massive stars that exhibit strong mass-loss. In theory, these stars can form either by intrinsic mass loss (stellar winds or eruptions), or via mass-removal in binaries. The Wolf-Rayet stars in the Magellanic Clouds are often thought to have originated through binary interaction due to the low ambient metallicity and, correspondingly, reduced wind mass-loss. We performed a complete spectral analysis of all known WR binaries of the nitrogen sequence in the Small and Large Magellanic Clouds, as well as additional orbital analyses, and constrained the evolutionary histories of these stars. We find that the bulk of Wolf-Rayet stars are luminous enough to be explained by single-star evolution. In contrast to prediction, we do not find clear evidence for a large population of low-luminosity Wolf-Rayet stars that could only form via binary interaction, suggesting a discrepancy between predictions and observations.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Azzopardi, M. & Breysacher, J. 1979, A&A, 75, 120 Google Scholar
Bartzakos, P., Moffat, A. F. J., & Niemela, V. S. 2001, MNRAS, 324, 18 CrossRefGoogle Scholar
Breysacher, J., Azzopardi, M., & Testor, G. 1999, A&AS, 137, 117 Google Scholar
Conti, P. S. 1976, in Proc. 20th Colloq. Int. Ap. Liége, university of Liége, p. 132, 193212 Google Scholar
Crowther, P. A. 2000, A&A, 356, 191 Google ScholarPubMed
Crowther, P. A. & Hadfield, L. J. 2006, A&A, 449, 711 Google Scholar
Crowther, P. A. & Walborn, N. R. 2011, MNRAS, 416, 1311 CrossRefGoogle Scholar
de Mink, S. E., Sana, H., Langer, N., Izzard, R. G., & Schneider, F. R. N. 2014, ApJ, 782, 7 CrossRefGoogle Scholar
Dufour, R. J., Shields, G. A., & Talbot, Jr ., R. J. 1982, ApJ, 252, 461 Google Scholar
Eldridge, J. J., Izzard, R. G., & Tout, C. A. 2008, MNRAS, 384, 1109 CrossRefGoogle Scholar
Eldridge, J. J. & Stanway, E. R. 2016, MNRAS, 462, 3302 CrossRefGoogle Scholar
Eldridge, J. J., Stanway, E. R., Xiao, L., et al. 2017, PASA, 34, e058 CrossRefGoogle Scholar
Foellmi, C., Moffat, A. F. J., & Guerrero, M. A. 2003a, MNRAS, 338, 360 CrossRefGoogle Scholar
Foellmi, C., Moffat, A. F. J., & Guerrero, M. A. 2003b, MNRAS, 338, 1025 CrossRefGoogle Scholar
Georgy, C., Ekström, S., Hirschi, R., et al. 2015, ArXiv e-printsGoogle Scholar
Götberg, Y., de Mink, S. E., Groh, J. H., et al. 2018, ArXiv e-printsGoogle Scholar
Gräfener, G., Koesterke, L., & Hamann, W.-R. 2002, A&A, 387, 244 Google Scholar
Groh, J. H., Oliveira, A. S., & Steiner, J. E. 2008, A&A, 485, 245 Google Scholar
Hainich, R., Pasemann, D., Todt, H., et al. 2015, A&A, 581, A21 Google Scholar
Hainich, R., Rühling, U., Todt, H., et al. 2014, A&A, 565, A27 Google Scholar
Hamann, W.-R. & Gräfener, G. 2004, A&A, 427, 697 Google Scholar
Kudritzki, R. P., Pauldrach, A., & Puls, J. 1987, A&A, 173, 293 Google Scholar
Larsen, S. S., Clausen, J. V., & Storm, J. 2000, A&A, 364, 455 Google Scholar
Maeder, A. & Meynet, G. 1994, A&A, 287, 803 Google Scholar
Massey, P., Neugent, K. F., Morrell, N., & Hillier, D. J. 2014, ApJ, 788, 83 CrossRefGoogle Scholar
Neugent, K. F., Massey, P., Hillier, D. J., & Morrell, N. 2017, ApJ, 841, 20 CrossRefGoogle Scholar
Neugent, K. F., Massey, P., & Morrell, N. 2018, ApJ, 863, 181 CrossRefGoogle Scholar
Mokiem, M. R., de Koter, A., Vink, J. S., et al. 2007, A&A, 473, 603 Google Scholar
Nugis, T., Annuk, K., & Hirv, A. 2007, Baltic Astronomy, 16, 227 Google Scholar
Oliveira, A. S., Steiner, J. E., & Cieslinski, D. 2003, MNRAS, 346, 963 CrossRefGoogle Scholar
Paczynski, B. 1973, in IAU Symposium, Vol. 49, Wolf-Rayet and High-Temperature Stars, ed. Bappu, M. K. V. & Sahade, J., 143CrossRefGoogle Scholar
Ramachandran, V., Hainich, R., Hamann, W.-R., et al.. 2018, A&A, 609, A7 Google Scholar
Doran, E. I., Crowther, P. A., de Koter, A., et al. 2013, A&A, 558, A134 Google Scholar
Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 444 CrossRefGoogle Scholar
Sander, A., Shenar, T., Hainich, R., et al. 2015, A&A, 577, A13 Google Scholar
Schnurr, O., Moffat, A. F. J., St-Louis, N., Morrell, N. I., & Guerrero, M. A. 2008, MNRAS, 389, 806 CrossRefGoogle Scholar
Schootemeijer, A. & Langer, N. 2017, ArXiv e-printsGoogle Scholar
Schootemeijer, A., Götberg, Y., Mink, S. E. d., Gies, D., & Zapartas, E. 2018, A&A, 615, A30 Google Scholar
Shenar, T., Hainich, R., Todt, H., et al. 2016, A&A, 591, A22 Google Scholar
Shenar, T., Richardson, N. D., Sablowski, D. P., et al. 2017, A&A, 598, A85 Google Scholar
Shenar, T., Hainich, R., Todt, H., et al. 2018, A&A, 616, A103 Google Scholar
Smith, L. F., Shara, M. M., & Moffat, A. F. J. 1996, MNRAS, 281, 163 CrossRefGoogle Scholar
Smith, N. & Owocki, S. P. 2006, ApJl, 645, L45 CrossRefGoogle Scholar
Smith, R. C., Points, S., Chu, Y.-H., et al. 2005, in Bulletin of the American Astronomical Society, Vol. 37, American Astronomical Society Meeting Abstracts, 145.01Google Scholar
van der Hucht, K. A. 2001, New A Rev., 45, 135 CrossRefGoogle Scholar
Vanbeveren, D., De Donder, E., Van Bever, J., Van Rensbergen, W., & De Loore, C. 1998, New A, 3, 443 CrossRefGoogle Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574 Google Scholar
Vink, J. S. 2017, A&A, 607, L8 Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2000, A&A, 362, 295 Google Scholar
Wang, L., Gies, D. R., & Peters, G. J. 2018, ApJ, 853, 156 CrossRefGoogle Scholar