Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T04:03:11.399Z Has data issue: false hasContentIssue false

Spiral arm triggering of star formation

Published online by Cambridge University Press:  01 August 2006

Ian A. Bonnell
Affiliation:
SUPA, School of Physics and Astronomy, University of St Andrews, KY16 9SS, UK email: iab1@st-and.ac.uk
Clare L. Dobbs
Affiliation:
Department of Physics, University of Exeter, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present numerical simulations of the passage of clumpy gas through a galactic spiral shock, the subsequent formation of giant molecular clouds (GMCs) and the triggering of star formation. The spiral shock forms dense clouds while dissipating kinetic energy, producing regions that are locally gravitationally bound and collapse to form stars. In addition to triggering the star formation process, the clumpy gas passing through the shock naturally generates the observed velocity dispersion size relation of molecular clouds. In this scenario, the internal motions of GMCs need not be turbulent in nature. The coupling of the clouds' internal kinematics to their externally triggered formation removes the need for the clouds to be self-gravitating. Globally unbound molecular clouds provides a simple explanation of the low efficiency of star formation. While dense regions in the shock become bound and collapse to form stars, the majority of the gas disperses as it leaves the spiral arm.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Baade, W. 1963, Evolution of stars and Galaxies (Cambridge: Harvard Univ.), p 63CrossRefGoogle Scholar
Bate, M.R., Bonnell, I.A. & Price, N.M. 1995, MNRAS 277, 362CrossRefGoogle Scholar
Blitz, L. & Williams, J. 1999, in: Lada, C.J. & Kylafis, N.D. (eds.), The origin of stars and planetary systems (Kluwer: Dordrecht), p. 3Google Scholar
Bonnell, I.A., Dobbs, C.L., Robitaille, T.P. & Pringle, J.E. 2006, MNRAS 365, 37Google Scholar
Clark, P.C. & Bonnell, I.A. 2004 MNRAS 347, L36CrossRefGoogle Scholar
Clark, P.C. & Bonnell, I.A. 2006 MNRAS 368, 1787Google Scholar
Clark, P.C., Bonnell, I.A., Zinnecker, H. & Bate, M.R. 2004 MNRAS 359, 809CrossRefGoogle Scholar
Cowie, L. L. 1981, ApJ 245, 66CrossRefGoogle Scholar
Dobbs, C.L. & Bonnell, I.A. 2006a, MNRAS 367, 873CrossRefGoogle Scholar
Dobbs, C.L. & Bonnell, I.A. 2006b, MNRAS in pressGoogle Scholar
Dobbs, C.L., Bonnell, I.A. & Pringle, J.E. 2006, MNRAS 371, 1663CrossRefGoogle Scholar
Elmegreen, B. G. 1991, ApJ 378, 139CrossRefGoogle Scholar
Elmegreen, B.G. & Elmegreen, D.M. 1983, MNRAS 203, 31CrossRefGoogle Scholar
Elmegreen, B. & Scalo, J. 2004, ARAA 42, 211CrossRefGoogle Scholar
Ferguson, A.M.N., Wyse, R.F.G., Gallagher, J.S., & Hunter, D.A. 1998, ApJ 506, L19CrossRefGoogle Scholar
Heyer, M.H. & Brunt C.M. 2004, ApJ 615, 45CrossRefGoogle Scholar
Ferguson, A.M.N., Wyse, R.F.G., Gallagher, J.S. & Hunter, D.A. 1998, ApJ 506, L19Google Scholar
Larson, R.B. 1981, MNRAS 194, 809Google Scholar
Mac Low, M.M. & Klessen, R.S. 2004, Rev. Mod. Phys 74, 125CrossRefGoogle Scholar
Monaghan, J.J. 1992, ARAA 30, 543Google Scholar
Motte, F., André, P. & Neri, R. 1998, A&A 336, 150Google Scholar
Roberts, W.W. 1969, ApJ 158, 123CrossRefGoogle Scholar