Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-29T14:27:20.543Z Has data issue: false hasContentIssue false

Star-forming Substructure within Molecular Clouds

Published online by Cambridge University Press:  21 March 2013

James Di Francesco*
Affiliation:
National Research Council of Canada, 5071 West Saanich Road, Victoria, BC, CanadaV9E 2E7 email: james.difrancesco@nrc-cnrc.gc.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Wide-field far-infrared/submillimeter continuum maps of molecular clouds by the Herschel Space Observatory GBS and HOBYS surveys are revealing the star-forming substructures that lead to star formation in dense gas. In particular, these maps have revealed the central role in clouds of filaments, likely formed through turbulent motions. These filaments appear to be non-isothermal and fragment into cores only when their column densities exceed a stability threshold. Organizations of filament networks suggest the relative role of turbulence and gravity can be traced in different parts of a cloud, and filament intersections may lead to larger amounts of mass flow that form the precursors of high-mass stars or clusters.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Arzoumanian, D., et al. 2011, A&A, 529, L6Google Scholar
André, Ph., et al. 2010, A&A, 518, L102Google Scholar
Di Francesco, J., Evans, N. J. II, Caselli, P., Myers, P. C., Shirley, Y., Aikawa, Y., & Tafalla, M. 2007, in: Reipurth, B., Jewitt, D., & Keil, K. (eds.) Protostars and Planets V (Tucson: University of Arizona Press), p. 17Google Scholar
Fiege, J. D. & Pudritz, R. E. 2000, MNRAS, 311, 85Google Scholar
Gao, Y. & Solomon, P. M. 2004, ApJ, 606, 271CrossRefGoogle Scholar
Griffin, M., et al. 2010 A&A, 518, L3Google Scholar
Gutermuth, R. A., et al., 2011 ApJ, 739, 84Google Scholar
Hennemann, M., et al. 2012, A&A, 543, 3Google Scholar
Heyer, M., Krawczyk, C., Duval, J., & Jackson, J. M., 2009, ApJ, 699, 1092CrossRefGoogle Scholar
Hill, T., et al. 2011, A&A, 533, 94Google Scholar
Inutska, S.-I., & Miyama, S. M. 1997 ApJ, 480, 681Google Scholar
Könyves, V., et al., 2010, A&A, 518, L106Google Scholar
Lada, C. J., Lombardi, M., & Alves, J. F. 2010, ApJ, 724, 687Google Scholar
Larson, R. B. 1981, MNRAS, 194, 809Google Scholar
Motte, F., et al. 2010, A&A, 518, L77Google Scholar
Ostriker, J. 1964, ApJ, 140, 1056CrossRefGoogle Scholar
Palmerim, P., et al. 2012 A&A, submittedGoogle Scholar
Peretto, N., et al. 2012, A&A, 541, 63Google Scholar
Pilbratt, G., et al. 2010, A&A, 518, L1Google Scholar
Poglitsch, A., et al. 2010, A&A, 518, L2Google Scholar
Schneider, N., et al. 2012, A&A, 540, L11Google Scholar
Sousbie, T. 2011, MNRAS, 414, 350Google Scholar
Wu, J., et al. 2005, 635, L173CrossRefGoogle Scholar