Skip to main content Accessibility help
×
Home
Hostname: page-component-5c569c448b-phmbd Total loading time: 0.483 Render date: 2022-07-05T20:48:43.827Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The Sun and stars as the primary energy input in planetary atmospheres

Published online by Cambridge University Press:  26 February 2010

Ignasi Ribas*
Affiliation:
Institut de Ciències de l'Espai (CSIC-IEEC), Facultat de Ciències, Torre C5, parell, 2a pl, Campus UAB, 08193 Bellaterra, Spain email: iribas@ice.csic.es
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Proper characterization of the host star to a planet is a key element to the understanding of its overall properties. The star has a direct impact through the modification of the structure and evolution of the planet atmosphere by being the overwhelmingly larger source of energy. The star plays a central role in shaping the structure, evolution, and even determining the mere existence of planetary atmospheres. The vast majority of the stellar flux is well understood thanks to the impressive progress made in the modeling of stellar atmospheres. At short wavelengths (X-rays to UV), however, the information is scarcer since the stellar emission does not originate in the photosphere but in the chromospheric and coronal regions, which are much less understood. The same can be said about particle emissions, with a strong impact on planetary atmospheres, because a detailed description of the time-evolution of stellar wind is still lacking. Here we review our current understanding of the flux and particle emissions of the Sun and low-mass stars and briefly address their impact in the context of planetary atmospheres.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Ahmad, Q. R., et al. 2001, Physical Review Letters, 87, 071301CrossRefGoogle Scholar
Aschwanden, M. J., Poland, A. I., & Rabin, D. M. 2001, ARA&A, 39, 175CrossRefGoogle Scholar
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, ARA&A, 47, 481CrossRefGoogle Scholar
Audard, M., Güdel, M., Drake, J. J., & Kashyap, V. L. 2000, ApJ, 541, 396CrossRefGoogle Scholar
Ayres, T. R. 1997, JGR, 102, 1641CrossRefGoogle Scholar
Ayres, T. R., Marstad, N. C., & Linsky, J. L. 1981, ApJ, 247, 545CrossRefGoogle Scholar
Bahcall, J. 2004, arXiv:physics/0406040Google Scholar
Baker, V. R. 2001, Nature, 412, 228CrossRefGoogle Scholar
Baliunas, S. L. & Vaughan, A. H. 1985, ARA&A, 23, 379CrossRefGoogle Scholar
Baraffe, I., Selsis, F., Chabrier, G., Barman, T. S., Allard, F., Hauschildt, P. H., & Lammer, H. 2004, A&A, 419, L13Google Scholar
Barnes, S. A. 2007, ApJ, 669, 1167CrossRefGoogle Scholar
Bauer, S. J. & Lammer, H. 2004, Planetary Aeronomy, Springer, BerlinCrossRefGoogle Scholar
Ben-Jaffel, L. 2008, ApJ, 688, 1352CrossRefGoogle Scholar
Bohlin, R. C. 2007, in The Future of Photometric, Spectrophotometric and Polarimetric Standardization, ASP Conference Series, 364, 315Google Scholar
Bradley, R. S. & Jones, P. D. 1993, The Holocene, 3, 367CrossRefGoogle Scholar
Carr, M. H. & Head, J. W. 2003, JGR (Planets), 108, 5042CrossRefGoogle Scholar
Cassisi, S. 2009, American Institute of Physics Conference Series, 1111, 55Google Scholar
Chabrier, G. & Baraffe, I. 2000, ARA&A, 38, 337CrossRefGoogle Scholar
Christensen-Dalsgaard, J., di Mauro, M. P., Houdek, G., & Pijpers, F. 2009, A&A, 494, 205Google Scholar
Donahue, T. M. 2004, Icarus, 167, 225CrossRefGoogle Scholar
Donahue, R. A., Saar, S. H., & Baliunas, S. L. 1996, ApJ, 466, 384CrossRefGoogle Scholar
Dorren, J. D. & Guinan, E. F. 1994, in IAU Coll. 143, The Sun as a Variable Star, eds. Pap, J. M., Fröhlich, C., Hudson, H. S., & Solanki, S. K. (Cambridge: CUP), p. 206Google Scholar
Durney, B. 1972, in Solar Wind, eds. Sonett, C. P., Coleman, P. J., & Wilcox, J. M. (Washington: NASA), p. 282Google Scholar
Edvardsson, B. 2008, Physica Scripta Volume T, 133, 014011CrossRefGoogle Scholar
Fröhlich, C. & Lean, J. 2004, A&A Rev, 12, 273Google Scholar
Gaidos, E. J., Güdel, M., & Blake, G. A. 2000, Geophys. Res. Lett., 27, 501CrossRefGoogle Scholar
Garcés, A., Catalán, S., & Ribas, I. 2010, in preparationGoogle Scholar
Grießmeier, J.-M., Stadelmann, A., Penz, T., et al. 2004, A&A, 425, 753Google Scholar
Güdel, M., Guinan, E. F., & Skinner, S. L. 1997, ApJ, 483, 947CrossRefGoogle Scholar
Güdel, M., Audard, M., Smith, K. W., et al. 2003, in Future of Cool-Star Astrophysics: The Twelfth Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, eds. Brown, A., G. Harper, M., & Ayres, T. R. (Boulder: Univ. of Colorado), p. 303Google Scholar
Hartle, R. E., Donahue, T. M., Grebowsky, J. M., & Mayr, H. G. 1996, JGR, 101, 4525CrossRefGoogle Scholar
Holmström, M., Ekenbäck, A., Selsis, F., Penz, T., Lammer, H., & Wurz, P. 2008, Nature, 451, 970CrossRefGoogle Scholar
Holzwarth, V. & Jardine, M. 2007, A&A, 463, 11Google Scholar
Hoyt, D. V. & Schatten, K. H. 1997, The role of the sun in climate change, New York: Oxford University PressGoogle Scholar
Hunten, D. M., Gérard, J.-C., & François, L. M. 1991, in The Sun in Time, eds. Sonett, C. P., Giampapa, M. S., & Matthews, M. S., (Tucson: The University of Arizona Press), p. 463Google Scholar
Järvinen, S. P., Berdyugina, S. V., & Strassmeier, K. G. 2005, A&A, 440, 735Google Scholar
Jones, P. D., Briffa, K. R., Barnett, T. P., & Tett, S. F. B. 1998, The Holocene, 8, 455CrossRefGoogle Scholar
Joshi, M. M., Haberle, R. M., & Reynolds, R. T. 1997, Icarus, 129, 450CrossRefGoogle Scholar
Kasting, J. F. & Catling, D. 2003, ARA&A, 41, 429CrossRefGoogle Scholar
Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icarus, 101, 108CrossRefGoogle Scholar
Khodachenko, M. L., et al. 2007, Astrobiology, 7, 167CrossRefGoogle Scholar
Kim, Y. C., Demarque, P. & Yi, S. K. 2002, ApJS, 143, 499CrossRefGoogle Scholar
Kraft, R. P. 1967, ApJ, 150, 551CrossRefGoogle Scholar
Kulikov, Y. N., et al. 2006, P&SS, 54, 1425Google Scholar
Kulikov, Y. N., Lammer, H., Lichtenegger, H. I. M., Penz, T., Breuer, D., Spohn, T., Lundin, R., & Biernat, H. K. 2007, Space Science Reviews, 129, 207CrossRefGoogle Scholar
Lafon, J.-P. J. & Berruyer, N. 1991, A&A Rev, 2, 249Google Scholar
Lammer, H., Stumptner, W., Molina-Cuberos, G. J., Bauer, S. J., & Owen, T. 2000, P&SS, 48, 529Google Scholar
Lammer, H., Lichtenegger, H., Kolb, C., Ribas, I., Guinan, E. F., & Bauer, S. J. 2003a, Icarus, 165, 9CrossRefGoogle Scholar
Lammer, H., Selsis, F., Ribas, I., Guinan, E. F., Bauer, S. J., & Weiss, W. W. 2003b, ApJ, 598, L121CrossRefGoogle Scholar
Lammer, H., et al. 2007, Astrobiology, 7, 185CrossRefGoogle Scholar
Lammer, H., Kasting, J. F., Chassefière, E., Johnson, R. E., Kulikov, Y. N., & Tian, F. 2008, Space Science Reviews, 139, 399CrossRefGoogle Scholar
Lammer, H., et al. 2009, A&A Rev, 17, 181Google Scholar
Landini, M., Monsignori Fossi, B. C., Pallavicini, R., & Piro, L. 1986, A&A, 157, 217Google Scholar
Lean, J. 1997, ARA&A, 35, 33CrossRefGoogle Scholar
Lean, J., Beer, J., & Bradley, R. 1995, GeoRL, 22, 3195Google Scholar
Lebreton, Y. 2000, ARA&A, 38, 35CrossRefGoogle Scholar
Lundin, R., Lammer, H., & Ribas, I. 2007, Space Science Reviews, 129, 245CrossRefGoogle Scholar
Mamajek, E. E. & Hillenbrand, L. A. 2008, ApJ, 687, 1264CrossRefGoogle Scholar
Meehl, G. A., Arblaster, J. M., Matthes, K., Sassi, F., & van Loon, H. 2009, Science, 325, 1114CrossRefGoogle Scholar
Micela, G. & Marino, A. 2003, A&A, 404, 637Google Scholar
Murray, J. B., Muller, J.-P., Neukum, G., et al. 2005, Nature, 434, 352CrossRefGoogle Scholar
Newkirk, G. Jr., 1980, in The ancient Sun: Fossil record in the Earth, Moon and meteorites, eds. Pepin, R. O., Eddy, J. A., & Merrill, R. B. (New York: Pergamon Press), p. 293Google Scholar
Parker, E. N. 1970, ARA&A, 8, 1CrossRefGoogle Scholar
Pavlov, A. A., Brown, L. L., & Kasting, J. F. 2001, JGR, 106, 23267CrossRefGoogle Scholar
Pizzolato, N., Maggio, A., Micela, G., Sciortino, S., & Ventura, P. 2003, A&A, 397, 147Google Scholar
Ribas, I., Guinan, E. F., Güdel, M., & Audard, M. 2005, ApJ, 622, 680CrossRefGoogle Scholar
Ribas, I., Morales, J. C., Jordi, C., Baraffe, I., Chabrier, G., & Gallardo, J. 2008, Memorie della Societa Astronomica Italiana, 79, 562Google Scholar
Ribas, I., Porto de Mello, G. F., Ferreira, L. D., Selsis, F., Hébrard, E., Catalán, S., Garcés, A., Nascimento, J. D. Jr, & de Medeiros, J. R. 2010, in preparationGoogle Scholar
Rottman, G. J. 1988, in Solar Radiative Output Variation, ed. Foukal, P. (Boulder: NCAR), p. 71Google Scholar
Sackmann, I.-J. & Boothroyd, A. I. 2003, ApJ, 583, 1024CrossRefGoogle Scholar
Sagan, C. & Mullen, G. 1972, Science, 177, 52CrossRefGoogle Scholar
Scalo, J., et al. 2007, Astrobiology, 7, 85CrossRefGoogle Scholar
Segura, A., Kasting, J. F., Meadows, V., Cohen, M., Scalo, J., Crisp, D., Butler, R. A. H., & Tinetti, G. 2005, Astrobiology, 5, 706CrossRefGoogle Scholar
Selsis, F. 2000, PhD Thesis, Univ. BordeauxGoogle Scholar
Selsis, F., Kasting, J. F., Levrard, B., Paillet, J., Ribas, I., & Delfosse, X. 2007, A&A, 476, 1373Google Scholar
Shkolnik, E., Gaidos, E., & Moskovitz, N. 2006, AJ, 132, 1267CrossRefGoogle Scholar
Simon, T., Boesgaard, A. M., & Herbig, G. 1985, ApJ, 293, 551CrossRefGoogle Scholar
Skumanich, A. 1972, ApJ, 171, 565CrossRefGoogle Scholar
Soderblom, D. R. 1982, ApJ, 263, 239CrossRefGoogle Scholar
Soon, W. W.-H. & Yaskell, S. H. 2004, The Maunder minimum and the variable Sun-Earth connection, World Scientific PublishingGoogle Scholar
Stauffer, J. R., Caillault, J.-P., Gagne, M., Prosser, C. F., & Hartmann, L. W. 1994, ApJS, 91, 625CrossRefGoogle Scholar
Stelzer, B. & Neuhäuser, R. 2001, A&A, 377, 538Google Scholar
Stevenson, D. J. 2009, Space Science Reviews, in pressGoogle Scholar
Strassmeier, K. G. 2009, A&A Rev, 17, 251Google Scholar
Terada, N., Kulikov, Y. N., Lammer, H., Lichtenegger, H. I. M., Tanaka, T., Shinagawa, H., & Zhang, T. 2009, Astrobiology, 9, 55CrossRefGoogle Scholar
Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.-M., Ballester, G. E., Ferlet, R., Hébrard, G., & Mayor, M. 2003, Nature, 422, 143CrossRefGoogle Scholar
Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.-M., Ballester, G. E., Ferlet, R., Hébrard, G., & Mayor, M. 2008, ApJ, 676, L57CrossRefGoogle Scholar
Vilhu, O. & Walter, F. M. 1987, ApJ, 321, 958CrossRefGoogle Scholar
Webb, D. F. & Howard, R. A. 1994, JGR, 99, 4201CrossRefGoogle Scholar
Wilson, O. C. 1966, ApJ, 144, 695CrossRefGoogle Scholar
Wood, B. E., Müller, H.-R., Zank, G., & Linsky, J. L. 2002, ApJ, 574, 412CrossRefGoogle Scholar
Wood, B. E., Müller, H.-R., Zank, G. P., Linsky, J. L., & Redfield, S. 2005, ApJ, 628, L143CrossRefGoogle Scholar
Woods, T. N., Rottman, G. J., Bailey, S. M., Solomon, S. C., & Worden, J. R. 1998, Solar Phys., 177, 133CrossRefGoogle Scholar
Yelle, R., Lammer, H., & Ip, W.-H. 2008, Space Science Reviews, 139, 437CrossRefGoogle Scholar
Yi, S. K., Kim, Y. C., & Demarque, P. 2003, ApJS, 144, 259CrossRefGoogle Scholar
Zahnle, K. J. & Walker, J. C. G. 1982, Rev. Geophys. Space Phys., 20, 280CrossRefGoogle Scholar
Zurbuchen, T. H. 2007, ARA&A, 45, 297CrossRefGoogle Scholar
You have Access
12
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The Sun and stars as the primary energy input in planetary atmospheres
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The Sun and stars as the primary energy input in planetary atmospheres
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The Sun and stars as the primary energy input in planetary atmospheres
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *