Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-17T01:57:45.040Z Has data issue: false hasContentIssue false

A Survey of Seyfert AGN: Nuclear Gas Disks and Direct Black Hole Mass Estimates

Published online by Cambridge University Press:  03 June 2010

E. K. S. Hicks
Affiliation:
Max Planck Institut für extraterrestrische Physik, Garching, Germany Email: ehicks@mpe.mpg.de
R. I. Davies
Affiliation:
Max Planck Institut für extraterrestrische Physik, Garching, Germany Email: ehicks@mpe.mpg.de
M. A. Malkan
Affiliation:
Department of Physics and Astronomy, University of California, Los Angeles, USA
R. Genzel
Affiliation:
Max Planck Institut für extraterrestrische Physik, Garching, Germany Email: ehicks@mpe.mpg.de Department of Physics, University of California, Berkeley, USA
L. J. Tacconi
Affiliation:
Max Planck Institut für extraterrestrische Physik, Garching, Germany Email: ehicks@mpe.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a survey of 18 nearby Seyfert nuclei, we find evidence for geometrically thick gas disks on scales of tens of parsecs. Mapping the interstellar medium traced by H2 ν = 1–0 S(1) emission using the infrared integral field spectrometers OSIRIS and SINFONI reveals general disk rotation with an additional significant component of random bulk motion implied by the high local velocity dispersion. The size scale of the typical nuclear gas disk is ~30 pc in radius with a comparable vertical height, and the distribution and kinematics suggest the gas is spatially mixed with the nuclear stellar population. Based on the estimated characteristic gas mass fraction of 10%, the average gas mass within this region is ~107M. This suggests column densities of NH ~ 5 × 1023 cm−2, but the significantly lower densities implied by the stellar continuum extinction indicate that the gas distribution on these scales is dominated by dense clumps. We discuss the feasibility of constraining the masses of the central black holes via modeling of the gas disk kinematics, highlighting the importance of properly accounting for the gas velocity dispersion, and the use of these direct mass estimates to calibrate masses derived from the method of reverberation mapping.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Davies, R. I., Sánchez, F. M., Genzel, R., Tacconi, L. J., Hicks, E. K. S., Friedrich, S., & Sternberg, A. 2007, ApJ, 671, 138Google Scholar
Ferrarese, L. & Merritt, D. 2000, ApJ, 539, L9CrossRefGoogle Scholar
Gebhardt, K., et al. 2000, ApJ, 539, L13CrossRefGoogle Scholar
Gultekin, K., et al. 2009, ApJ, 698, 198CrossRefGoogle Scholar
Hicks, E. K. S., Davies, R. I., Malkan, M. A., Genzel, R., Tacconi, L. J., Mueller Sanchez, F., & Sternberg, A. 2009, ApJ, 696, 448CrossRefGoogle Scholar
Hicks, E. K. S. & Malkan, M. A. 2008, ApJS, 174, 31CrossRefGoogle Scholar
Kormendy, J. & Richstone, D. 1995, ARAA, 33, 581CrossRefGoogle Scholar
McGill, K. L., Woo, J., Tommaso, T., & Malkan, M. A. 2008, ApJ, 673, 703CrossRefGoogle Scholar
Neumayer, N.Cappellari, M., Reunanen, J., Rix, H.-W., van der Werf, P., & Davies, R. I. 2007, ApJ, 671, 1329CrossRefGoogle Scholar
Peterson, B. M., et al. 2004, ApJ, 613, 682CrossRefGoogle Scholar
Vestergaard, M. 2002, ApJ, 571, 733CrossRefGoogle Scholar