Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-18T02:48:56.824Z Has data issue: false hasContentIssue false

Towards the identification of carriers of the unidentified infrared (UIR) bands in novae

Published online by Cambridge University Press:  30 November 2022

Izumi Endo
Affiliation:
University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
Itsuki Sakon
Affiliation:
University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan
Takashi Onaka
Affiliation:
University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan
Yuki Kimura
Affiliation:
Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo 060-0819, Japan
Seiji Kimura
Affiliation:
The University of Electro-Communications, 1-5-1, Chofugaoka, Chofu, Tokyo 182-8585, Japan
Setsuko Wada
Affiliation:
The University of Electro-Communications, 1-5-1, Chofugaoka, Chofu, Tokyo 182-8585, Japan
L. Andrew Helton
Affiliation:
SOFIA Science Center/NASA Ames Research Center, MS 211-1, P.O. Box 1, Moffett Field, CA 94035-0001, USA
Ryan M. Lau
Affiliation:
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, 229-8510, Japan
Yoko Kebukawa
Affiliation:
Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
Yasuji Muramatsu
Affiliation:
University of Hyogo, 2167 Shosha, Himeji-shi, Hyogo, 671-2280, Japan
Nanako O. Ogawa
Affiliation:
Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan
Naohiko Ohkouchi
Affiliation:
Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-Cho, Yokosuka, 237-0061, Japan
Masato Nakamura
Affiliation:
Nihon University, Narashinodai, Funabashi 274-8501, Japan
Sun Kwok
Affiliation:
The University of British Columbia, 2329 West Mall Vancouver, V6T 1Z4, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The unidentified infrared (UIR) bands, whose carriers are thought to be organics, have been widely observed in various astrophysical environments. However, our knowledge of the detailed chemical composition and formation process of the carriers is still limited. We have synthesized laboratory organics named Quenched Nitrogen-included Carbonaceous Composite (QNCC) by quenching plasma produced from nitrogen gas and hydrocarbon solids. Infrared and X-ray analyses of QNCC showed that infrared properties of QNCC well reproduce the UIR bands observed in novae and amine structures contained in QNCC play an important role in the origin of the broad 8 m feature, which characterizes the UIR bands in novae. QNCC is at present the best laboratory analog of organic dust formed around dusty classical novae, which carries the UIR bands in novae via thermal emission process [Endo et al.(2021)].

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Allmandola, L. J., Tielens, A. G. G. M., & Barker, J. R. 1985, ApJL, 290, 25 CrossRefGoogle Scholar
Allmandola, L. J., Tielens, A. G. G. M., & Barker, J. R. 1989, ApJS, 71, 733 CrossRefGoogle Scholar
Duley, W. W., & Williams, D. A. 2011, ApJL, 737, L44 CrossRefGoogle Scholar
Dwek, E., Sellgren, K., Soifer, B. T., & Werner, M. W. 1980, ApJ, 238, 140 CrossRefGoogle Scholar
Endo, I., Sakon, I., Onaka, T., et al. 2021, ApJ, 917, 103 CrossRefGoogle Scholar
Evans, A., & Rawlings, J. M. C. 1994, MNRAS, 269, 427 CrossRefGoogle Scholar
Gehrz, R. D., Truran, J. W., Williams, R. E., & Starrfield, S. 1998, PASP, 110, 3 CrossRefGoogle Scholar
Guillois, O., Nenner, I., Papoular, R., & Reynaud, C. 1996, ApJ, 464, 810 Google Scholar
Helton, L. A., Evans, A., Woodward, C. E., & Gehrz, R. D. 2011, EAS Publications Series, 46, 407 CrossRefGoogle Scholar
Jones, A. P., Duley, W. W., & Williams, D. A. 1990, QJRAS, 31, 567 Google Scholar
Kuki, M., Uemura, T., Yamaguchi, M., et al. 2015, Journal of Photopolymer Science and Technology, 28, 531 CrossRefGoogle Scholar
Kwok, S., & Zhang, Y. 2011, Nature, 479, 80 CrossRefGoogle Scholar
Kwok, S., & Zhang, Y. 2013, ApJ, 771, 5 CrossRefGoogle Scholar
Leger, A., & Puget, J. L. 1984, A&A, 137, L5 Google Scholar
Munari, U., Siviero, A., Henden, A., et al. 2008, A&A, 492, 145 Google Scholar
Ogawa, N. O., Nagata, T., Kitazato, H., & Ohkouchi, N. 2010, Earth, Life and Isotopes, 339Google Scholar
Papoular, R. 2001, A&A, 378, 597 Google Scholar
Sakata, A., Wada, S., Tanabe, T., & Onaka, T. 1984, ApJ, 287, L51 CrossRefGoogle Scholar
Sakata, A., Wada, S., Onaka, T., & Tokunaga, A. T. 1987, ApJL, 320, L63 CrossRefGoogle Scholar
Sakata, A., Wada, S., Onaka, T., & Tokunaga, A. T. 1990, ApJ, 353, 543 CrossRefGoogle Scholar
Sakon, I., Sako, S., Onaka, T., et al. 2016, ApJ, 817, 145 CrossRefGoogle Scholar
Tielens, A. G. G. M. 2008, ARAA, 46, 289 CrossRefGoogle Scholar
Tokunaga, A. T. 1997, Diffuse Infrared Radiation and the IRTS, ASP Conference Series, 124, 149Google Scholar