Skip to main content
×
×
Home

Virtual asteroids and virtual impactors

  • Andrea Milani (a1)
Abstract

When a celestial body, e.g., an asteroid, has been observed only over a short time, its orbit is not well determined but may be anywhere in a confidence region where the astrometric residuals are acceptable. This region can be sampled by a swarm of Virtual Asteroids (VA) sharing the reality of the asteroid: one of them is real, but we do not know which one. The problem is how to sample the confidence region with a small number of VA, still being able to solve the main problems of asteroid recovery/identification and impact monitoring.

One class of methods uses random sampling of the confidence region to mimic with the VA population the probabilistic distributions of the orbits. This class includes the Monte Carlo and the Statistical Ranging methods. When it is critical to detect a very small probability (e.g., of a catastrophic impact) by computing a small number of VA orbits, and also when a large catalog of asteroids has to be handled, it is more efficient to sample the confidence region with a geometric object, such as a smooth manifold: it can be sampled uniformly, taking into account its dimension. Our group has developed in the last 6-7 years 1-dimensional sampling methods based upon a differentiable curve, the Line Of Variations (LOV), which can represent, in suitable cases, the spine of the confidence region. The LOV is sampled by uniformly spaced VA, thus interpolation between consecutive VA is possible. This is the basis for the current algorithms of Impact Monitoring, used in Pisa and at JPL. The LOV method is also used for recovery of lost asteroids and for identification of independent discoveries of the same object.

When the asteroid has moved on the sky while being observed by $<1^\circ$, the confidence region is wide in two directions and the LOV may be an inappropriate way of sampling it. We have recently developed 2-dimensional sampling methods based upon the concept of Admissible Region, a 2-dimensional manifold parameterized by a compact subset of the range/range-rate plane. This region is then sampled by triangulation, with each node used as a VA. This allows to define methods for asteroid identification/recovery and for impact monitoring starting from very poor data, such as the ones collected during a single night of observations.To search for other articles by the author(s) go to: http://adsabs.harvard.edu/abstract_service.html

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Virtual asteroids and virtual impactors
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Virtual asteroids and virtual impactors
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Virtual asteroids and virtual impactors
      Available formats
      ×
Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Proceedings of the International Astronomical Union
  • ISSN: 1743-9213
  • EISSN: 1743-9221
  • URL: /core/journals/proceedings-of-the-international-astronomical-union
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 12 *
Loading metrics...

Abstract views

Total abstract views: 89 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 16th December 2017. This data will be updated every 24 hours.