Hostname: page-component-cb9f654ff-mwwwr Total loading time: 0 Render date: 2025-08-04T13:31:14.887Z Has data issue: false hasContentIssue false

Zeeman-Doppler imaging: old problems and new methods

Published online by Cambridge University Press:  01 November 2008

Thorsten A. Carroll
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany email: tcarroll@aip.de
Markus Kopf
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany email: tcarroll@aip.de
Klaus G. Strassmeier
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany email: tcarroll@aip.de
Ilya Ilyin
Affiliation:
Astrophysikalisches Institut Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany email: tcarroll@aip.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Zeeman-Doppler Imaging (ZDI) is a powerful inversion method to reconstruct stellar magnetic surface fields. The reconstruction process is usually solved by translating the inverse problem into a regularized least-square or optimization problem. In this contribution we will emphasize that ZDI is an inherent non-linear problem and the corresponding regularized optimization is, like many non-linear problems, potentially prone to local minima. We show how this problem will be exacerbated by using an inadequate forward model. To facilitate a more consistent full radiative transfer driven approach to ZDI we describe a two-stage strategy that consist of a principal component analysis (PCA) based line profile reconstruction and a fast approximate polarized radiative transfer method to synthesize local Stokes profiles. Moreover, we introduce a novel statistical inversion method based on artificial neural networks (ANN) which provide a fast calculation of a first guess model and allows to incorporate better physical constraints into the inversion process.

References

Berdyugina, S. V. 2007, Mem. Soc. Astr. It. 78, 242Google Scholar
Berdyugina, S. V., Jankov, S., Ilyin, I., Tuominen, I., & Fekel, F. C. 1998, A&A 334, 863Google Scholar
Bishop, C. M., 1995, Neural Networks for Pattern Recognition, Oxford University PressCrossRefGoogle Scholar
Brown, S. F., Donati, J.-F., Rees, D. E., & Semel, M. 1991, A&A 250, 463Google Scholar
Carroll, T. A., Kopf, M., Ilyin, I., & Strassmeier, K. G. 2009, A&A, in prep.Google Scholar
Carroll, T. A. & Kopf, M. 2008, A&A 481, L37Google Scholar
Carroll, T. A., Kopf, M., & Strassmeier, K. G. 2008, A&A 488, 781Google Scholar
Carroll, T. A., Kopf, M., Ilyin, I., & Strassmeier, K. G. 2007, AN 328, 1043Google Scholar
Carroll, T. A. & Staude, J. 2001, A&A 378, 316Google Scholar
Donati, J.-F., Jardine, M. M., Gregory, S. G., Petit, P., Bouvier, J., Dougados, C., Mnard, F., Cameron, A. C., Harries, T. J., Jeffers, S. V., & Paletou, F. 2007, MNRAS 380, 1297CrossRefGoogle Scholar
Donati, J.-F., Forveille, T., Cameron, A. C., Barnes, J. R., Delfosse, X., Jardine, M. M., & Valenti, J. A. 2006, Science 311, 633CrossRefGoogle Scholar
Donati, J.-F. 1999, MNRAS 302, 457CrossRefGoogle Scholar
Donati, J.-F., Semel, M., Carter, B. D., Rees, D. E., & Collier Cameron, A. 1997, MNRAS 291, 658CrossRefGoogle Scholar
Donati, J.-F., Semel, M., Rees, D. E., Taylor, K., & Robinson, R. D. 1990, A&A 232, L1Google Scholar
Elstner, D. & Korhonen, H. 2005, AN 326, 278Google Scholar
Engl, H. W., Hanke, M., & Neubauer, A. 1996, Regularization of Inverse Problems, Kluwer Academic Publishers Group, Dordrecht, The NetherlandsCrossRefGoogle Scholar
Hussain, G. A. J., van Ballegooijen, A. A., Jardine, M., & Collier Cameron, A. 2002, ApJ 575, 1078CrossRefGoogle Scholar
Kochukhov, O., Bagnulo, S., Wade, G. A., Sangalli, L., Piskunov, N., Landstreet, J. D., Petit, P., & Sigut, T. A. A. 2004, A&A 414, 613Google Scholar
Landi Deglinnocenti, E. & Landi Deglinnocenti, M. 1985, SP 97, 239Google Scholar
Martínez González, M. J., Asensio Ramos, A., Carroll, T. A., Kopf, M., Ramírez Vélez, J. C., & Semel, M. 2008, A&A 486, 637Google Scholar
Petit, P., Dintrans, B., Solanki, S. K., Donati, J.-F., Aurire, M., Lignires, F., Morin, J., Paletou, F., Ramirez Velez, J., Catala, C., & Fares, R. et al. 2008, MNRAS, 388, 80CrossRefGoogle Scholar
Piskunov, N. & Kochukhov, O. 2002, A&A 381, 736Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical Recipes, Cambridge: University Press, 2nd ed.Google Scholar
Rees, D. E., Durrant, C. J., & Murphy, G. A. 1989, ApJ 339, 1093CrossRefGoogle Scholar
Semel, M. 1989, A&A 225, 456Google Scholar
Strassmeier, K. G., Woche, M., Andersen, M., & Ilyin, I. 2007, AN 328, 627Google Scholar
Strassmeier, K. G., Woche, M., Ilyin, I., Popow, E., Bauer, S.-M., Dionies, F., Fechner, T., Weber, M., Hofmann, A., Storm, J., Materne, R., Bittner, W., Bartus, J., Granzer, T., Denker, C., Carroll, T., Kopf, M., DiVarano, I., Beckert, E., Lesser, M. et al. 2008, Ground-based and Airborne Instrumentation for Astronomy, Proc. of the SPIE, Vol. 7014, p. 70140NCrossRefGoogle Scholar
Stenflo, J. O. 1994, Solar Magnetic Fields – Polarized Radiation Diagnostics, Astrophysics and Space Science Library, 189, Dordrecht, Boston: Kluwer Academic PublishersCrossRefGoogle Scholar