Skip to main content Accessibility help
×
Home

Comparing Virtual Reality and Desktop Interface for Reviewing 3D CAD Models

  • Nikola Horvat (a1), Stanko Škec (a1) (a2), Tomislav Martinec (a1), Fanika Lukačević (a1) and Marija Majda Perišić (a1)...

Abstract

Use of virtual reality (VR) is considered beneficial for reviewing 3D models throughout product design. However, research on its usability in the design field is still explorative, and previous studies are often contradictory regarding the usability of VR for 3D model review. This paper argues that the usability of VR should be assessed by analysing human factors such as spatial perception and taking into consideration the complexity of the reviewed product. Hence, a comparative evaluation study has been conducted to assess spatial perception in desktop interface-based and VR-based review of 3D models of products with different levels of complexity. The results show that participants in VR more could perceive the fit of user interface elements, and estimation of the model dimensions had a lower relative error than in desktop interface. It has been found that various sensory cues are used to perceive the model size and that the employed sensory cues depend on the level of complexity. Finally, it is proposed that differences between a desktop interface and VR for reviewing models are more evident when reviewing models of higher complexity levels.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Comparing Virtual Reality and Desktop Interface for Reviewing 3D CAD Models
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Comparing Virtual Reality and Desktop Interface for Reviewing 3D CAD Models
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Comparing Virtual Reality and Desktop Interface for Reviewing 3D CAD Models
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.

Corresponding author

Contact: Horvat, Nikola, University of Zagreb, FSB, Department of Design, Croatia, nikola.horvat@fsb.hr

References

Hide All
Banerjee, P., Bochenek, G.M. and Ragusa, J.M. (2002), “Analyzing the relationship of presence and immersive tendencies on the conceptual design review process”, Journal of Computing and Information Science in Engineering, Vol. 2 No. 1, pp. 5964. https://doi.org/10.1115/1.1486218
Berg, L.P. and Vance, J.M. (2016), “An industry case study: investigating early design decision making in virtual reality”, Journal of Computing and Information Science in Engineering, Vol. 17 No. 1, p. 011001. https://doi.org/10.1115/1.4034267
Berg, L.P. and Vance, J.M. (2017), “Industry use of virtual reality in product design and manufacturing: a survey”, Virtual Reality, Vol. 21 No. 1, pp. 117. https://doi.org/10.1007/s10055-016-0293-9
Chandrasegaran, S.K., Ramani, K., Sriram, R.D., Horváth, I., Bernard, A., Harik, R.F. and Gao, W. (2013), “The evolution, challenges, and future of knowledge representation in product design systems”, Computer-Aided Design, Vol. 45 No. 2, pp. 204228. https://doi.org/10.1016/j.cad.2012.08.006
Coburn, J.Q., Freeman, I. and Salmon, J.L. (2017), “A review of the capabilities of current low-cost virtual reality technology and its potential to enhance the design process”, Journal of Computing and Information Science in Engineering, Vol. 17 No. 3, p. 031013. https://doi.org/10.1115/1.4036921
de Casenave, L. and Lugo, J.E. (2017), “Design review using virtual reality enabled CAD”, ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Cleveland, August 6–9, p. V001T02A067. https://doi.org/10.1115/DETC2017-67878
Freeman, I., Salmon, J. and Coburn, J. (2018), “A bi-directional interface for improved interaction with engineering models in virtual reality design reviews”, International Journal on Interactive Design and Manufacturing, Vol. 12 No. 2, pp. 549560. https://doi.org/10.1007/s12008-017-0413-0
Gîrbacia, F., Beraru, A., Talabă, D. and Mogan, G. (2012), “Visual depth perception of 3D CAD models in desktop and immersive virtual environments”, International Journal of Computers, Communications and Control, Vol. 7 No. 5, pp. 840848. https://doi.org/10.15837/ijccc.2012.5.1339
Gooch, A.A. and Willemsen, P. (2002), “Evaluating space perception in npr immersive environments”, 2nd International Symposium on Non-photorealistic animation and rendering, Annecy, June 3–5, pp. 105110.
Hou, M. and Hollands, J.G. (2009), “Comparative evaluation of display technologies for collaborative design review”, Presence, Vol. 18 No. 2, pp. 125138. https://doi.org/10.1162/pres.18.2.125
Hubka, V. and Eder, W.E. (1988), Theory of Technical Systems: A Total Concept Theory for Engineering Design, Springer-Verlag, Berlin Heidelberg, https://doi.org/10.1007/978-3-642-52121-8
Liu, Y., Lather, J. and Messner, J. (2014), “Virtual Reality to Support the Integrated Design Process: A Retrofit Case Study”, 2014 International Conference on Computing in Civil and Building Engineering, Orlando, June 23-25, pp. 801808. https://doi.org/10.1061/9780784413616.100
Mohler, B.J., Di Luca, M. and Bülthoff, H.H. (2013), “Multisensory contributions to spatial perception”, In: Waller, D. and Nadel, L. (Ed.), Handbook of Spatial Cognition, American Psychological Association, Washington, pp. 8197. https://doi.org/10.1037/13936-005
Paes, D., Arantes, E. and Irizarry, J. (2017), “Immersive environment for improving the understanding of architectural 3D models: Comparing user spatial perception between immersive and traditional virtual reality systems”, Automation in Construction, Vol. 84 No. December, pp. 292303. https://doi.org/10.1016/j.autcon.2017.09.016
Satter, K. and Butler, A. (2015), “Competitive Usability Analysis of Immersive Virtual Environments in Engineering Design Review”, Journal of Computing and Information Science in Engineering, Vol. 15 No. 3, p. 031001. https://doi.org/10.1115/1.4029750
Wolfartsberger, J., Zenisek, J., Sievi, C. and Silmbroth, M. (2017), “A virtual reality supported 3D environment for engineering design review”, 2017 23rd International Conference on Virtual System & Multimedia (VSMM), Dublin, Oct 31 - Nov 4, IEEE, pp. 18. https://doi.org/10.1109/VSMM.2017.8346288

Keywords

Comparing Virtual Reality and Desktop Interface for Reviewing 3D CAD Models

  • Nikola Horvat (a1), Stanko Škec (a1) (a2), Tomislav Martinec (a1), Fanika Lukačević (a1) and Marija Majda Perišić (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed